

Algorithms and Uncertainty

Winter Term 2024/25

Tutorial Session - Week 14

Exercise 1:

Consider a zero-sum game between Anton and Betty in which the following matrix shows Bettys winnings:

$$\begin{array}{c} B_1 \quad B_2 \quad B_3 \\ \begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \end{array} \left(\begin{array}{ccc} -4 & 2 & 5 \\ 2 & -4 & -3 \\ 3 & -6 & -2 \\ -3 & 8 & 6 \end{array} \right) \end{array}$$

- (a) Explain why Anton will never choose A_4 . Use this fact to reduce the game to one involving a 3×3 matrix.
- (b) Use similar thinking to reduce the game to one involving a 2×2 matrix.
- (c) Solve the 2×2 matrix game found in (b). Then use your answer to reveal the optimal strategies for Anton and Betty in the original 4×3 game.

Exercise 2:

Under the assumption that there exists only a finite number of instances and a finite number of deterministic algorithms, show that there exists a randomized algorithm and a probability distribution over instances such that Yao's Principle applies with equality.