

Algorithms and Uncertainty

Winter Term 2024/25

Exercise Set 5

If you want to hand in your solutions for this problem set, please send them via email to rlehming@uni-bonn.de by Monday evening. Of course, submitting solutions in groups is also possible.

*If you would like to present one of the solutions in class, please also send an email to rlehming@uni-bonn.de stating **which task** you would like to present in **which of the tutorials**. Deadline for the email is Monday, 10:00 pm. Please note that the tasks will be allocated on a first-come-first-serve basis, so sending this email earlier than Monday evening is highly recommended.*

Exercise 1:

(4 Points)

Let us consider a generalization of the version of Markov decision processes covered in the lecture. For every state $s \in \mathcal{S}$, only a subset of the actions $\mathcal{A}_s \subseteq \mathcal{A}$, $\mathcal{A}_s \neq \emptyset$, is available. Devise an algorithm that computes an optimal policy for a finite time horizon T , show its correctness, and give a bound on its running time.

Exercise 2:

(2 Points)

Consider the cost-minimization variant of the optimal stopping problem in which we know the prior distributions. In step i , we can stop the sequence at cost c_i . We have to stop the sequence at some point and want to minimize the cost for doing so.

Show that there is **no** $\alpha < \infty$ such that for all distributions the optimal policy has cost at most $\alpha \mathbf{E}[\min_i c_i]$.

Hint: It suffices to consider $n = 2$.

Exercise 3:

(5 Points)

We consider the following stochastic decision problem: There are n boxes; box i contains a prize of 1€ with probability q_i and is empty otherwise. The game ends when we have found a non-empty box. That is, the final prize is either 0€ or 1€. At each point in time, we can also decide to stop playing. We can open as many boxes as we like but opening box i costs c_i €. Find an optimal policy.

Hint: It can be useful to consider the cases $n = 1$ and $n = 2$ first.