

Algorithmic Game Theory

Winter Term 2021/22

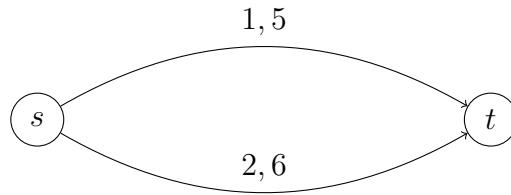
Exercise Set 5

Exercise 1: (1+3+2 Points)

Referring to the Price of Anarchy from Lecture 8, we introduced a more optimistic point of view called the *Price of Stability* in Lecture 9. For an equilibrium concept \mathbf{Eq} , it is defined as

$$PoS_{\mathbf{Eq}} = \frac{\min_{p \in \mathbf{Eq}} SC(p)}{\min_{s \in S} SC(s)} .$$

Consider the following symmetric network congestion game with two players:



- (a) What is the Price of Anarchy and the Price of Stability of pure Nash equilibria?
- (b) What is the Price of Anarchy and the Price of Stability of mixed Nash equilibria?

Hint: First of all, determine all mixed Nash equilibria. You might start with a sentence like “Let σ be a mixed Nash equilibrium with $\sigma_1 = (\lambda_1, 1 - \lambda_1)$, $\sigma_2 = (\lambda_2, 1 - \lambda_2)$ ” and subsequently derive properties of λ_1 and λ_2 .

- (c) What is the best upper bound for the Price of Anarchy that can be shown via smoothness?

Exercise 2: (4 Points)

Consider a (λ, μ) -smooth game with N players and let $s^{(1)}, \dots, s^{(T)}$ be a sequence of states such that the external regret of every player is at most $R^{(T)}$. Moreover, let s^* denote a state that minimizes the social cost. We want to upper bound the average social cost of the sequence of states. To this end, show the following bound:

$$\frac{1}{T} \sum_{t=1}^T SC(s^{(t)}) \leq \frac{N \cdot R^{(T)}}{(1 - \mu)T} + \frac{\lambda}{1 - \mu} SC(s^*) .$$

Exercise 3: (3+2 Points)

We call s an ϵ -approximation to a pure Nash equilibrium if $c_i(s) \leq (1 + \epsilon)c_i(s'_i, s_{-i})$ for all i and s'_i .

- (a) Consider a (λ, μ) -smooth cost-minimization game and let $0 < \epsilon < \frac{1}{\mu} - 1$. Prove that the PoA of ϵ -approximations to pure Nash equilibria is at most $\frac{(1+\epsilon)\lambda}{1-(1+\epsilon)\mu}$.
- (b) Can you state a similar result for more general equilibrium concepts?