

Algorithmic Game Theory

Winter Term 2021/22

Exercise Set 4

Exercise 1: (4+4 Points)

Consider the following regret-minimization-algorithm.

GREEDY

- Set $p_1^1 = 1$ and $p_j^1 = 0$ for all $j \neq 1$.
- In each round $t = 1, \dots, T$:

Let $L_{min}^t = \min_{i \in N} L_i^t$ for $L_i^t = \sum_{t' \leq t} \ell_i^{(t')}$ and $S^t = \{i \in N \mid L_i^t = L_{min}^t\}$.
Set $p_i^{t+1} = 1$ for $i = \min S^t$ and $p_j^{t+1} = 0$ otherwise.

- Show that the costs of GREEDY are at most $N \cdot L_{min}^T + (N - 1)$.
- State a scheme for an example such that the stated upper bound of (a) is tight for an infinite number of values T .

Exercise 2: (5 Points)

We consider the Multiplicative-Weights Algorithm with a slightly modified update rule. Instead of using $w_i^{(t+1)} = w_i^{(t)} \cdot (1 - \eta)^{\ell_i^{(t)}}$, we now use $w_i^{(t+1)} = w_i^{(t)} \cdot (1 - \eta \cdot \ell_i^{(t)})$. Prove a statement as in Proposition 7.7. for this modified update rule.