
Algorithmic Game Theory, Winter 2020/21 Lecture 13 (5 pages)

VCG Mechanisms
Thomas Kesselheim Last Update: December 10, 2020

So far, we considered single-parameter environments for mechanism-design problems. We
found a characterization of truthful mechanisms, making it somewhat easy to design a truthful
mechanism. For general settings, such a nice characterization does not exist. However, if the
task is to maximize social welfare and we do not care too much about computational issues,
there is a very elegant solution due to Vickrey, Clarke, and Groves.

1 Motivating Example: Combinatorial Auction
In a combinatorial auction, we have a set N of n bidders and a set M of m items. Each bidder
i has a private valuation function vi : 2M → R≥0, defining a non-negative value of each subset
of items. Let Vi denote the set of all valuation functions. This set might be restricted to
particular functions in certain settings. An interesting class of valuation functions are unit-
demand functions, for which there are vi,j such that vi(S) = maxj∈S vi,j . That is, each bidder’s
valuation is only the maximum value of a single item in the set.

The set of feasible allocations is given as X = {(S1, . . . , Sn) | Si ∩ Si′ = ∅ for i 6= i′}.
A direct mechanism is a pairM = (f, p), consisting of an allocation function f : V → X and

a payment rule p : V → Rn, where V = V1 × . . .× Vn.

Example 13.1. We could have N = {1, 2}, M = {A,B}. The following valuations are unit-
demand: v1({A}) = 5, v1({B}) = 9, v1({A,B}) = 9, v2({A}) = 0, v2({B}) = 5, v2({A,B}) = 5,
v1(∅) = v2(∅) = 0.

As there is no additional value from giving a bidder more than one item, the problem of
maximizing social welfare corresponds to finding the max-weight matching in the following graph
(indicated by bold edges).
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2 Model
Combinatorial auctions are just one example of a problem that fits into our general model. We
may have an arbitrary set of feasible outcomes X. For each bidder i, there is a set Vi of possible
valuation functions vi : X → R. (Syntactically this is a little different and more general than the
valuations in the combinatorial auctions above.) We denote V = V1 × . . .× Vn.

A direct mechanism is a pairM = (f, p), consisting of an allocation function f : V → X and a
payment rule p : V → Rn. Bidder i’s utility under bids b ∈ V is given by ui(b, vi) = vi(f(b))−pi(b).

3 VCG Mechanism with Clarke Pivot Rule
As a matter of fact, sometimes people refer to VCG mechanisms as a class of mechanisms
following a particular template. However, whenever one says “the” VCG mechanism, this will
refer to the following VCG mechanism with Clarke pivot rule.
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Definition 13.2. Let f : V → X be a function that maximizes declared welfare, that is f(b) ∈
arg maxx∈X

∑
i bi(x) for all b ∈ V . Then the VCG mechanism with Clarke pivot rule is defined

asM = (f, p), where
pi(b) = max

x∈X

∑
j 6=i

bj(x)−
∑
j 6=i

bj(f(b)) .

The idea behind this payment rule is as follows. The first sum represents the declared welfare
of all bidders except for i that would be achieved if we were not restricted in any way. The
second term is exactly the amount that is achieved by f(b), which means that we are optimizing
over all bidders including i. The difference therefore is the loss of declared welfare due to the
presence of bidder i. This is called bidder i’s externality.

Theorem 13.3 (Vickrey-Clarke-Groves). The VCG mechanism with Clarke pivot rule is
dominant-strategy incentive compatible.

Proof. Observe that for all bi, b−i,

ui((bi, b−i), vi) = vi(f(bi, b−i))− pi(bi, b−i) = vi(f(bi, b−i))−max
x∈X

∑
j 6=i

bj(x) +
∑
j 6=i

bj(f(bi, b−i)) .

On input (vi, b−i), the function f returns a solution x∗, which maximizes vi(x∗) + ∑
j 6=i bj(x∗).

That is, for any x ∈ X, we have vi(x∗) + ∑
j 6=i bj(x∗) ≥ vi(x) + ∑

j 6=i bj(x). In particular, this
holds for x = f(bi, b−i) for all possible bi.

Consequently,

vi(f(vi, b−i)) +
∑
j 6=i

bj(f(vi, b−i)) ≥ vi(f(bi, b−i)) +
∑
j 6=i

bj(f(bi, b−i))

and therefore
ui((vi, b−i), vi) ≥ ui((bi, b−i), vi) .

4 Examples

4.1 Single-Item Auctions Revisited

As a first example for VCG, let us consider single-item auctions again. Remember that each
agent’s valuation function vi given by

vi(x) =
{
ti if agent i receives the item in x
0 otherwise .

Given the vector b, the function f selects the agent with the highest bid. Let this agent be
denoted by i∗. For i∗, we now have

pi∗(b) = max
x∈X

∑
j 6=i∗

bj(x)−
∑
j 6=i∗

bj(f(b)) .

We have maxx∈X
∑

j 6=i∗ bj(x) is exactly the second-highest bid. Furthermore, for j 6= i∗, we have
bj(f(b)) = 0 because agent j does not get the item.

For all agents i 6= i∗

pi(b) = max
x∈X

∑
j 6=i

bj(x)−
∑
j 6=i

bj(f(b)) = bi∗ − bi∗ = 0 .

That is, agent i∗ pays the second highest bid, the other agents pay nothing. This is exactly
the second-price auction.
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4.2 Sponsored Search Auctions

In a sponsored search auction, we sell k < n ad slots on a search results page. The higher the
slot is displayed on the page, the more likely it will be clicked. For slots 1, . . . , k, we assume
click through rates of α1 ≥ α2 ≥ . . . ≥ αk. Agent i’s valuation is expressed in terms of a single
number vi such that vi(x) = viαj if agent i gets slot j in x.

If v1 ≥ v2 ≥ . . . ≥ vn, then the social-welfare optimizing allocation gives slot j to bidder
j. This results in social welfare ∑k

j=1 vjαj . The optimal social welfare without agent i is∑i−1
j=1 vjαj + ∑k+1

j=i+1 vjαj−1. Consequently, given truthful reports, if we set αk+1 = 0, agent i’s
VCG payment is

pi(v) =
i−1∑
j=1

vjαj +
k+1∑

j=i+1
vjαj−1 −

i−1∑
j=1

vjαj +
k∑

j=i+1
vjαj

 =
k+1∑

j=i+1
vj(αj−1 − αj) .

Interestingly, for mysterious reasons in practice this scheme is not applied. Instead a rule
called generalized second price is used: Agent i has to pay vi+1αi+1. This is generally not
incentive compatible.

4.3 Unit-Demand Combinatorial Auction

Let us come back to our initial example of unit-demand combinatorial auctions. That is, there
are m items M and each bidder’s valuation is of the form vi(S) = maxj∈S vi,j . Maximizing the
declared welfare corresponds to finding the maximum-weight matching in a complete bipartite
graphs whose vertices are N ∪M . The edge between i ∈ N and j ∈M has weight vi,j .

Let us consider an example with three bidders 1, 2, 3 and three items A, B, C. We only
draw edges of positive value.
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The optimal matching is given by the thick edges. The payments are computed by removing
the respective bidder vertex and re-optimizing. Consequently, the payment of a bidder is given
by the most valuable augmenting path that arises by removing him. In the above example,
bidder 1 has to pay 5− 3 + 2− 1 = 3.

5 Further Properties
Besides incentive compatibility, the mechanism also enjoys the following nice properties:

• Individual Rationality. If vi(x) ≥ 0 for all x, then ui((vi, b−i), vi) ≥ 0 for all b−i. The
reason is that

ui((vi, b−i), vi) = vi(f(vi, b−i)) +
∑
j 6=i

bj(f(vi, b−i))−max
x∈X

∑
j 6=i

bj(x)

=

max
x∈X

vi(x) +
∑
j 6=i

bj(x)

−
max

x∈X

∑
j 6=i

bj(x)

 ≥ 0 .
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The term is non-negative because vi(x) + ∑
j 6=i bj(x) ≥∑

j 6=i bj(x) for all x. Therefore this
also holds for the maximum.

• No Positive Transfer. For all b, we have

pi(b) =

max
x∈X

∑
j 6=i

bj(x)

−
∑

j 6=i

bj(f(b))

 ≥ 0 ,

because ∑
j 6=i bj(f(b)) ≤ maxx∈X

∑
j 6=i bj(x): The left-hand side is just one possible value

that this expression can take whereas it is maximized on the right-hand side.

6 Limitations
We have seen that VCG mechanisms work well in many environments. However, it does not
yet solve all questions regarding mechanism design with money. There are several limitations:
First of all, to build a VCG mechanism, we have to solve the welfare-maximization problem
optimally. In many cases, this problem is actually intractable. Below we will see that only
approximating social welfare is not enough. VCG also does not optimize the payments in any
sense. For example, it does not even try to maximize the revenue obtained by the payments.
Also, agents only have a limited budget, but we do not ensure that they only spend a certain
amount. Finally, it might be a problem that agents collude. Although each single agents cannot
benefit from false reports themselves, other agents can.

Probably the biggest limitation from an algorithmic aspect is the fact that VCG requires
a welfare-maximizing solution. It will be instructive to see that this is indeed necessary
because there are approximation algorithms that cannot be turned into an incentive compatible
mechanism.

To show this, we again consider unit-demand combinatorial auctions. A fast way to find
a reasonable matching is the greedy algorithm: Consider all pairs (i, j) by non-decreasing bi,j .
Assign item j to bidder i unless item j has already been allocated or bidder i has already received
an item.

This is a very natural algorithm. It does not always compute the allocation that maximizes
declared welfare but it is 2-approximation. That is, we have ∑

i bi(f(b)) ≥ 1
2 maxx∈S

∑
i bi(x) for

all b. However, VCG payments won’t turn it into a truthful mechanism. We will show this even
in a more general way: There is no payment rule that turns this into a truthful mechanism.

Theorem 13.4. Let f be the greedy algorithm for unit-demand combinatorial auctions. There
is no payment rule p such thatM = (f, p) is a truthful mechanism.

Proof. We consider this kind of instance to show that no payment scheme can render the
mechanism incentive compatible.
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There are two items A and B. Bidder 1 has values v1,A and v1,B; bidder 2 has values 1 and 0.
We keep bidder 2’s valuation and report fixed at all times.
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For bidder 1, we compare three possible valuation functions v(1)
1 , v(2)

1 , v(3)
1 , defined by

v
(1)
1,A = 1− ε v

(1)
1,B = ε

v
(2)
1,A = 1 + ε v

(2)
1,B = 1 + 2ε

v
(3)
1,A = 1 + 2ε v

(3)
1,B = 1 + ε

where ε < 1
3 .

Suppose, we had a truthful mechanismM = (f, p). Then, by truthfulness,

u1((v(2)
1 , v2), v(2)

1 ) ≥ u1((v(1)
1 , v2), v(2)

1 )

because bidder 1 should not benefit from misreporting v(1)
1 when her true valuation is v(2)

1 . In
both cases, bidder 1 is getting item B, so

1 + 2ε− p1(v(2)
1 , v2) ≥ 1 + 2ε− p1(v(1)

1 , v2) ,

which implies p1(v(2)
1 , v2) ≤ p1(v(1)

1 , v2).
Analogously, we get

u1((v(3)
1 , v2), v(3)

1 ) ≥ u1((v(2)
1 , v2), v(3)

1 ) .

Note that in (v(3)
1 , v2), bidder 1 will get item A, in (v(2)

1 , v2) she will get item B. So

1 + 2ε− p1(v(3)
1 , v2) ≥ 1 + ε− p1(v(2)

1 , v2)

and therefore p1(v(3)
1 , v2) ≤ p1(v(2)

1 , v2) + ε.
Now, we come to the case in which the true valuation in v(1)

1 . For truthfulness, we need

u1((v(1)
1 , v2), v(1)

1 ) ≥ u1((v(3)
1 , v2), v(1)

1 ) .

When truthfully bidding v(1)
1 , bidder 1 will receive item B. When bidding v(3)

1 , she will receive
item A. This would mean that

ε− p1(v(1)
1 , v2) ≥ 1− ε− p1(v(3)

1 , v2) ,

which implies p1(v(3)
1 , v2) ≥ p1(v(1)

1 , v2) + 1− 2ε.
This, however, cannot be possible if also p1(v(3)

1 , v2) ≤ p1(v(2)
1 , v2) + ε ≤ p1(v(1)

1 , v2) + ε and
ε < 1

3 .
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