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Today, we will consider a subclass of combinatorial auctions. Our goal will be to design
mechanisms that are truthful, run in polynomial time, and yield good approximation guarantees.

The subclass will be a single-parameter settings, for which we already know by Myerson’s
Lemma that we have to confine ourselves to monotone outcome rules.

1 Combinatorial Auctions
Recall combinatorial auctions.

Definition 12.1 (Combinatorial Auction). In a combinatorial auction, a set of m items M
shall be allocated to a set of n bidders N = {1, . . . , n}. The bidders have private values for
bundles of items. The goal is to maximize social welfare.

• Feasible allocations: X = {(S1, . . . , Sn) ∈ (2M )n | Si ∩ Sj = ∅, i 6= j}

• Valuation functions: vi : 2M → R≥0, i ∈ N (private)

• Objective: Maximize social welfare
∑n
i=1 vi(Si)

We will generally assume free disposal, i.e., vi(S) ≥ vi(T ) for T ⊆ S, and that valuations are
normalized, i.e., vi(∅) = 0.

We will focus on the case where each bidder is interested in a single bundle of items. We will
call these bidders single minded.

Definition 12.2 (Single-Minded Bidders). Bidders are called single minded if, for every bidder
i ∈ N , there exists a bundle S∗i ⊆M and a value vi ∈ R≥0 such that

vi(T ) =
{
vi if T ⊇ S∗i ,
0 otherwise.

We call a bidder that is granted their bundle or a superset a winner, and we say that this bidder
wins the bundle.

Note that we again overload notation and use vi to both denote the function as well as the
value that a player has for winning. This is in line with our notation for single-item auctions
and single-parameter problems.

Our objective will be to maximize social welfare
∑
i∈N vi(x). In the case of single-minded

bidders, we can write it simply as
∑
i∈W vi, where W ⊆ N is the set of winners.

Example 12.3 (Single-Minded Combinatorial Auction). There are two items a and b and three
bidders Red, Green, and Blue. Red has a value of 10 for {a}, Green has a value of 14 for the set
{a, b}, and Blue has a value of 8 for {b}. Social welfare is maximized by allocating {a} to Red
and {b} to Blue.

Our goal will be to design a mechanism for combinatorial auction with single-minded bidders.
We will assume that the bundle S∗i that bidder i is interested in is public and only the valuation
vi is private. As we will see, this turns the problem into a single-parameter problem, to which
our previous results apply.

This mechanismM = (f, p) consists of an outcome rule f and a payment rule p. Both take
as their input a vector of bids b = (bi)i∈N . The outcome rule determines a set of winners W and
the payment rule assigns a payment to each bidder.

Recall our design goals:
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Figure 1: Single-minded CA instance from Example 12.3. The items are shown as black rectangles
and the bundles as color-coded ellipses.

1. The mechanism should be dominant strategy incentive compatible (DSIC).

2. At equilibrium, the mechanism should obtain high social welfare.

3. The mechanism should run in polynomial time.

2 Hardness
A first observation is that we cannot hope to get an exact solution because the allocation problem
is NP-hard. Note that this is purely an optimization question, the incentives do not matter at
all.

Theorem 12.4 (Lehmann, O’Callaghan, Shoham 1999). The allocation problem among single-
minded bidders is NP-hard.

Proof sketch. We will prove the claim by reduction from independent set. Consider a graph
G = (V,E). Each node is represented by a bidder. Each edge is represented by an item. For
bidder i, set S∗i = {e ∈ E | i ∈ e} and vi = 1.

Note that a set of bidders W corresponds to an independent set if and only if their sets S∗i
are disjoint, that is, if and only if W is a feasible set of winners. This implies that there is an
independent set of size y if and only if there is an allocation (i.e. a set of winners W ) such that∑
i∈W vi = y.

Due to this hardness result, we will consider approximation algorithms. We call an algorithm
an α-approximation, if for the solution x computed by the algorithm on input (vi)i∈N , we have∑
i∈N vi(x) ≥ 1

α maxx∗
∑
i∈N vi(x∗).

3 Greedy Mechanism for Small Bundle Sizes
We will first consider the following algorithm. It is clearly a polynomial-time algorithm. We will
show that it can be combined with payments to get a truthful mechanism and that it yields a
good approximation with respect to the maximum bundle size d = maxi∈N |S∗i |.

Greedy-by-Value

1. Re-order the bids such that b1 ≥ b2 ≥ · · · ≥ bn.

2. Initialize the set of winning bidders to W := ∅.

3. For i = 1 to n do: If S∗i ∩
⋃
j∈W S∗j = ∅, then W := W ∪ {i}.

Example 12.5. Consider the instance from Example 12.3. The ranking computed by Greedy-
by-Value is Green, Red, Blue. Green is considered first and accepted, which leads to the removal
of both Red and Blue. Green’s threshold bid is 10.

First, we will discuss the question of truthfulness. To this end, we will define threshold bids.
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Definition 12.6. Let W (b) denote the set of winners when the bids are b. Define the threshold
bid τi(b−i) for player i against bids b−i of the bidders other than i as the smallest bid such that
i ∈W (bi, b−i), that is

τi(b−i) = inf{bi | i ∈W (bi, b−i)} .

Theorem 12.7. Greedy-by-Value is a monotone algorithm and charging winners the respective
threshold bids yields a truthful mechanism.

Proof. In the notation of single-parameter problems, we would write fi(b) = 1 if i ∈W (b) and 0
otherwise.

To prove monotonicity, we have to observe that i ∈W (b) also implies i ∈W (b′i, b−i) for all
b′i ≥ bi. This follows from the fact that bidder i is only moving further to the front of the sorted
list of all bids. Therefore, if all items are still available when reaching this bidder when bidding
bi, the same will have to be true for b′i.

Myerson’s lemma tells us to charge payments

pi(b) = bifi(b)−
∫ bi

0
fi(t, b−i)dt .

0 biτi(b−i)

fi(·, b−i)

1

Figure 2: Allocation curve for monotone algorithm

As fi will take only values 0 and 1, due to monotonicity, the allocation curve will be very
simple as depicted in Figure 2. Also the integral expression tell us that if i 6∈W (b) then, due to
monotonicity, pi(b) = 0. Otherwise, if i ∈W (b)

pi(b) = bifi(b)−
∫ bi

0
fi(t, b−i)dt = bi −

∫ bi

τi(b−i)
1 dt = τi(b−i) .

Finally, the approximation guarantee follows by a simple charging argument.

Theorem 12.8. Greedy-by-Value is a d-approximation.

Proof. Let W be the set of bidders selected by the algorithm and let OPT be the optimal
solution. For i ∈W , let

OPTi = {j ∈ OPT, j ≥ i | S∗i ∩ S∗j 6= ∅} .

That is, OPTi contains the indices of the bidders j ≥ i that are in OPT and get blocked if we
accept i. Note that if i ∈ OPT then OPTi = {i}. Each j ∈ OPT is included in at least one set
OPTi for i ∈ W for the following reason: If j 6∈ OPTi for i ∈ W with i < j, then all items in
S∗j are still available when reaching bidder j in the execution. So, j would be accepted by the
algorithm and, hence, j ∈W and j ∈ OPTj . Therefore, we can write∑

j∈OPT
bj ≤

∑
i∈W

∑
j∈OPTi

bj .
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Figure 3: Challenge instance for Greedy-by-Value

Next, we have |OPTi| ≤ |S∗i | ≤ d. This is due to the fact that the sets S∗j for j ∈ OPTi are
disjoint but each have a non-empty intersection with S∗i . Furthermore, by the greedy ordering
bj ≤ bi for j ∈ OPTi. Therefore∑

j∈OPT
bj ≤

∑
i∈W

∑
j∈OPTi

bj ≤
∑
i∈W

d · bi = d ·
∑
i∈W

bi .

That the approximation guarantee can be as bad as d can be seen from examples such as
the one in Figure 3. Assume without loss of generality that m is a multiple of d. Every set of d
items is wanted by a distinct “big” bidder, who has a value of 1 + ε for it. Each of the d items
this bidder is interested in is requested by a distinct “small” bidder, each of which has a value
of 1. Greedy-by-Value will accept all the big bidders resulting in welfare m/d · (1 + ε), while
accepting all small bidders would have social welfare of m.

There are also hardness-of-approximation results showing that (under some assumptions) it
is impossible to get approximation factors that a lot better than d in polynomial time. However,
one get also get a

√
m-approximation in polynomial time, which is better for large bundle sizes.

4 Greedy Mechanism for Large Bundle Sizes
Our next algorithm avoids the trap in which our Greedy-by-Value algorithm stepped by normal-
izing bids with their bundle size. More specifically, it divides each bid by the square root of the
bundle size.

Greedy-by-Sqrt-Value-Density

1. Re-order the bids such that b1√
|S∗

1 |
≥ b2√

|S∗
2 |
≥ · · · ≥ bn√

|S∗
n|
.

2. Initialize the set of winning bidders to W := ∅.

3. For i = 1 to n do: If S∗i ∩
⋃
j∈W S∗j = ∅, then W := W ∪ {i}.

Example 12.9. Consider again the instance from Example 12.3. The ranking computed by
Greedy-by-Sqrt-Value-Density is 10 ≥ 14/

√
2 ≥ 8. So Red is considered first and accepted. This

leads to the removal of Green. Afterwards Blue is accepted. The threshold bid for Red is 14/
√

2,
for Blue it is zero.

Theorem 12.10 (Lehmann, O’Callaghan, Shoham 1999). Greedy-by-Sqrt-Value-Density is a√
m-approximation. It is monotone, so charging threshold bids makes it a truthful mechanism.

Proof. That Greedy-by-Sqrt-Value-Density is monotone can be shown by essentially the same
argument that showed that Greedy-by-Value is monotone. Holding a bidder and the bids of
the other bidders fixed, the bidder faces a ranked list of bids. Its position in this sorted list
determines whether he wins or not. A higher bid can only improve its position.

To establish an upper bound on the approximation guarantee we again write W and OPT
for the set of winners selected by the algorithm and the optimal one. Again, we define

OPTi = {j ∈ OPT, j ≥ i | S∗i ∩ S∗j 6= ∅} .
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Figure 4: Challenge instance for Greedy-by-Sqrt-Value-Density

And we can write ∑
j∈OPT

bj ≤
∑
i∈W

∑
j∈OPTi

bj .

So, if we can show
∑
j∈OPTi

bj ≤
√
m · bi, we are done.

As bj ≤
√
|S∗j | · bi/

√
|S∗i |, for j ∈ OPTi, we obtain

∑
j∈OPTi

bj ≤
bi√
|S∗i |
·

∑
j∈OPTi

√
|S∗j |

Next we will show that
∑
j∈OPTi

√
|S∗j | ≤

√
m ·

√
|S∗i |. To this end, we will use that the

function
√
· is concave. Therefore, by Jensen’s inequality, we have for all y1, . . . , y` ≥ 0 that

1
`

∑`
k=1
√
yk ≤

√
1
`

∑`
k=1 yk and therefore

∑`
k=1
√
yk ≤

√
`

∑`
k=1 yk. So, we get

∑
j∈OPTi

√
|S∗j | ≤

√
|OPTi| ·

∑
j∈OPTi

|S∗j |.

Now |OPTi| ≤ |S∗i | since every S∗j , for j ∈ OPTi, intersects S∗i and these intersections are
disjoint. Furthermore,

∑
j∈OPTi

|S∗j | ≤ m since OPTi is an allocation.
We obtain,

∑
j∈OPTi

bj ≤
bi√
|S∗i |
·

∑
j∈OPTi

√
|S∗j | ≤

bi√
|S∗i |
·
√
|OPTi| ·

√ ∑
j∈OPTi

|S∗j | ≤ bi
√
m .

We can also obtain a lower bound of
√
m on the approximation guarantee. Namely, we

consider instances such as the one given in Figure 4. There is one “big” bidder with a bundle
size of m and a value of

√
m + ε and m bidders, one for each item, with a bundle size and a

value of 1. Greedy-by-Sqrt-Value-Density accepts the big bidder for a social welfare of
√
m+ ε,

while accepting all small bidders would have led to a social welfare of m.
There is also a hardness-of-approximation result for this setting. Namely, our reduction to

prove Theorem 12.4 in combination with hardness-of-approximation results for independent set
show that one cannot hope to get approximation factors a lot better than

√
m in polynomial

time.

5 Conclusion
As we see, building truthful mechanisms with good approximation guarantees is not necessarily
difficult. Indeed, in the cases that we considered, even ignoring truthfulness one could not do
better. This is certainly not true for every setting. For others, there is a separation between
truthful and non-truthful approximation.
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