

## Algorithmic Game Theory

Winter Term 2020/21

Tutorial Session - Week 10

### Exercise 1:

Consider the following single-item auctions with two bidders whose valuations are drawn independently from a uniform distribution on the interval  $[0, 1]$ . Do not make use of the results of Lecture 19 in order to solve subtasks (a) and (b):

- (a) Show that the expected revenue of a second-price auction is  $\frac{1}{3}$ .
- (b) Now, define a second-price auction with *reserve price*  $p$ . Let  $v_1$  and  $v_2$  be the valuations of the bidders. The allocation and payment rule will be determined according to the following cases:
  1.  $\min\{v_1, v_2\} \geq p$ : Like in the second price auction.
  2.  $\max\{v_1, v_2\} < p$ : Nobody gets the item and no payments.
  3.  $v_1 \geq p > v_2$ : Bidder 1 gets the item and has to pay  $p$ .
  4.  $v_2 \geq p > v_1$ : Analogous to 3.

Show that using a reserve price of  $\frac{1}{2}$  the second-price auction generates an expected revenue of  $\frac{5}{12}$ .

**Additional Task:** Can you get the same results by the use of virtual values? Calculate the expected revenue of (a) and (b) using the results of Lecture 19.