

Algorithmic Game Theory

Winter Term 2020/21

Exercise Set 9

Exercise 1: (4 Points)

Consider m items and n bidders. We define a generalization of Walrasian equilibria: Let $S = (S_1, \dots, S_n)$ be an allocation of items to bidders and $q \in \mathbb{R}_{\geq 0}^m$ be a price vector. We call the pair (q, S) an ϵ -approximate Walrasian equilibrium if unallocated items have price 0, every bidder i has non-negative utility $v_i(S_i) - \sum_{j \in S_i} q_j \geq 0$, and every bidder receives items within ϵ of its favorite bundle, i.e., $v_i(S_i) - \sum_{j \in S_i} q_j \geq v_i(S'_i) - \sum_{j \in S'_i} q_j - \epsilon$ for every bundle S'_i .

Prove an approximate version of the First Welfare Theorem: If (q, S) is an ϵ -approximate Walrasian equilibrium, then the social welfare of an optimal matching S^* cannot surpass the one of S by more than $\min\{m, n\} \cdot \epsilon$.

Exercise 2: (4+4 Points)

Recall the valuation functions of single-minded bidders from Definition 12.2. Let the maximum bundle size be defined by $d = \max_{i \in \mathcal{N}} |S_i^*|$.

- (a) Show that in the case of single-minded bidders with maximum bundle size d , item bidding with first price payments is $(\frac{1}{2}, 2d)$ -smooth.

Hint: In order to define deviation bids $b_{i,j}^*$, consider a welfare-maximization allocation on v . If bidder i does not get his bundle in the optimal allocation, then define $b_{i,j}^* = 0$ for all items $j \in M$. Otherwise, define $b_{i,j}^* = \frac{v_i}{2d}$ for all $j \in S_i^*$ and $b_{i,j}^* = 0$ if $j \notin S_i^*$. That is, each winner in the optimal allocation equally divides the value for his bundle among all items of the bundle and bids half of it.

- (b) Now, we define prices for items by setting

$$p_j^v = \begin{cases} \frac{1}{2d} v_i(S_i^*) & \text{if buyer } i \text{ gets item } j \text{ in optimal solution on } v \\ 0 & \text{if item } j \text{ is unassigned in optimal solution on } v \end{cases}$$

Be inspired from Step 1 in Lecture 18 to show that using these prices in the full-information setting implies a $\frac{1}{2d}$ -approximation of the optimal social welfare.