

Algorithmic Game Theory

Winter Term 2020/21

Exercise Set 4

Exercise 1: (4+4 Points)

Consider the following regret-minimization-algorithm.

GREEDY

- Set $p_1^1 = 1$ and $p_j^1 = 0$ for all $j \neq 1$.

- In each round $t = 1, \dots, T$:

Let $L_{min}^t = \min_{i \in N} L_i^t$ and $S^t = \{i \in N \mid L_i^t = L_{min}^t\}$.

Set $p_i^{t+1} = 1$ for $i = \min S^t$ and $p_j^{t+1} = 0$ otherwise.

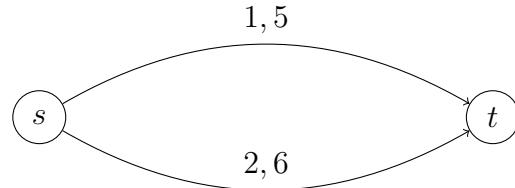
- Show that the costs of GREEDY are at most $N \cdot L_{min}^T + (N - 1)$.
- State a scheme for an example such that the stated upper bound of (a) is tight for an infinite number of values T .

Exercise 2: (1+3+2 Points)

Referring to the price of anarchy from Lecture 8 we can introduce a more optimistic point of view called the *price of stability*. For an equilibrium concept \mathbf{Eq} , it is defined as

$$PoS_{\mathbf{Eq}} = \frac{\min_{p \in \mathbf{Eq}} SC(p)}{\min_{s \in S} SC(s)} .$$

Consider the following symmetric network congestion game with two players:



- What is the Price of Anarchy and the Price of Stability of pure Nash equilibria?

- What is the Price of Anarchy and the Price of Stability of mixed Nash equilibria?

Hint: First of all, determine all mixed Nash equilibria. You might start with a sentence like “Let σ be a mixed Nash equilibrium with $\sigma_1 = (\lambda_1, 1 - \lambda_1)$, $\sigma_2 = (\lambda_2, 1 - \lambda_2)$ ” and subsequently derive properties of λ_1 and λ_2 .

- What is the best upper bound for the Price of Anarchy that can be shown via smoothness?

Exercise 3:

(4 Points)

Consider a (λ, μ) -smooth game with N players and let $s^{(1)}, \dots, s^{(T)}$ be a sequence of states such that the external regret of every player is at most $R^{(T)}$. Moreover, let s^* denote a state that minimizes the social cost. We want to upper bound the average social cost of the sequence of states. To this end, show the following bound

$$\frac{1}{T} \sum_{t=1}^T SC(s^{(t)}) \leq \frac{N \cdot R^{(T)}}{(1 - \mu)T} + \frac{\lambda}{1 - \mu} SC(s^*).$$