

Algorithmic Game Theory

Winter Term 2020/21

Exercise Set 3

Exercise 1: (3+3+4 Points)

Consider the local search problem *Positive Not-All-Equal kSat* (Pos-NAE-kSAT) which is defined the following way:

Instances: Propositional logic formula with n binary variables x_1, \dots, x_n that is described by m clauses c_1, \dots, c_m . Each clause c_i has a weight w_i and consists of exactly k literals, which are all positive (i.e., the formula does not contain any negated variable \bar{x}_i).

Feasible solutions: Any variable assignment $s \in \{0, 1\}^n$

Objective function: Sum of weights of clauses c_i in which not all literals are mapped to the same value.

Neighbourhood: Assignments s and s' are *neighbouring* if they differ in the assignment of a single variable.

- (a) Show: Pos-NAE-kSAT is in PLS.
- (b) Show: Pos-NAE-2SAT \leq_{PLS} MaxCut
- (b) Show: Pos-NAE-3SAT \leq_{PLS} Pos-NAE-2SAT

Exercise 2: (3 Points)

Show that the set of correlated equilibria of a cost-minimization game Γ is convex, i.e. for two correlated equilibria p, p' and $\lambda \in [0, 1]$, also $\lambda p + (1 - \lambda)p'$ is a correlated equilibrium.

Exercise 3: (3 Points)

Show that every correlated equilibrium is also a coarse correlated equilibrium.