
MA-INF 1203 Discrete and Computational Geometry

Wintersemester 2019/20
Assignment 8

Deadline: **3** December before noon (To be discussed: **3/4.** December 2019)

1 Crossing numbers

- a) Show that for any n and m , $5n < m < \binom{n}{2}$, there exist graphs with n vertices, m edges, and crossing number $O(m^3/n^2)$.
- b) Prove that in a drawing of G with the smallest possible number of crossings, no two arcs intersect more than once (including intersections at their endpoints).

2 Incidences

By extending the example which shows $I(n, n) = \Omega(n^{4/3})$, prove that for all m, n with $n^2 \geq m$ and $m^2 \geq n$, we have $I(m, n) = \Omega(n^{2/3}m^{2/3})$.

3 Cuttings

- a) Show that if we don't assume general position, then for any $n, r \in \mathbb{N}$, with $r \leq n$, there is a set of n lines in the plane which admits an $\frac{1}{r}$ -cutting with $O(r)$ (generalized) triangles.
- b) Consider an arrangement \mathcal{A} of n lines in the plane, in general position. Calculate the total number of (generalized) triangles arising by partitioning each cell of \mathcal{A} into (generalized) triangles by adding suitable diagonals.