
MA-INF 1203 Discrete and Computational Geometry

Wintersemester 2019/20

Assignment 6

Deadline: **19** November before noon (To be discussed: **19/20.** November 2019)

1 Convex hulls of random point sets

We consider a set P of n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ in $[0, 1]^2$, where the coordinates are chosen uniformly and independently at random from $[0, 1]$.

- (a) Consider a random assignment to $x_1, \dots, x_n, y_1, \dots, y_n$ as defined above. Assume that all x_i and y_i are different. Let $\sigma : [n] \rightarrow [n]$ be the permutation such that $x_{\sigma(i)} < x_{\sigma(j)}$ for all $i < j$. Derive an upper bound on the probability that the r -th point from the left, $(x_{\sigma(r)}, y_{\sigma(r)})$, lies on the convex hull.
- (b) Show that the expected number of vertices of the convex hull of P is in $O(\log n)$.

Hint: You may use the fact that all sorted orders of the random variables x_i and y_i are equally likely. More precisely, let $\tau : [n] \rightarrow [n]$ be the permutation such that $y_{\sigma(\tau(i))} < y_{\sigma(\tau(j))}$ for all $i < j$. In words, τ^{-1} is the permutation that would turn the list of points, sorted by x -coordinates, into a list sorted by y -coordinates. You may use the fact that all permutations τ are equally likely, for any σ .

2 Faster computation of the convex hull

Consider a set $P \subset \mathbb{R}^3$ of n points. Assume that if we pick a random sample $Y \subset P$ of size r then the expected number of points in Y on the boundary of $\text{conv}(Y)$ is $O(r^\alpha)$, for some constant $\alpha < 1$. Prove that under this condition, the expected running time of the convex hull algorithm given in the lecture is in $O(n)$.

3 Delaunay triangulations and Voronoi diagrams

- a) Define a graph on a set $P \subset \mathbb{R}^2$ as follows: Two points p and q are connected by an edge if and only if there exists a disk with both p and q on the boundary and with no point of P in its interior. Prove that this graph is the Delaunay triangulation of P .
- b) Given a Delaunay triangulation of $P \subset \mathbb{R}^2$ as a doubly connected edge list (DCEL), compute the graph of the Voronoi Diagram of P . Use the definition of the Voronoi diagram that includes an additional vertex at infinity that is incident to all unbounded Voronoi edges. Use the following definition of a DCEL:
 - The vertex record of a vertex v stores the coordinates of v in $\text{Coordinates}(v)$. It also stores a pointer $\text{IncidentEdge}(v)$ to an arbitrary half-edge that has v as its origin.

- The face record of a face f stores a pointer $IncidentEdge(f)$ to some half-edge on its boundary (this also holds for the outer face).
- The half-edge record of a half-edge \vec{e} stores a pointer $Origin(\vec{e})$ to its origin, a pointer $Twin(\vec{e})$ to its twin half-edge, and a pointer $IncidentFace(\vec{e})$ to the face that it bounds. The origin is chosen such that $IncidentFace(\vec{e})$ lies to the left of \vec{e} when it is traversed from origin to destination. The half-edge record also stores pointers $Next(\vec{e})$ and $Prev(\vec{e})$ to the next and previous edge on the boundary of $IncidentFace(\vec{e})$.

c) Show that the vertical projection of the edges of the polytope in \mathbb{R}^3 constructed via the lifting map as in the lecture is the Voronoi diagram of P .