
MA-INF 1203 Discrete and Computational Geometry

Wintersemester 2019/20
Assignment 5

Deadline: 12 November before noon (To be discussed: 12/13. November 2019)

1 Backwards analysis

Consider the algorithm flatQuicksort given below. The algorithm sorts the numbers stored
in an array by repeatedly partitioning a range of the array with respect to a randomly chosen
pivot element. Assume that the input numbers are pairwise distinct. In each iteration of
the outer for-loop, the range between two previously chosen pivots is partitioned into three
sets, namely, the elements smaller than the pivot, the pivot itself, and the elements larger
than the pivot. This is done by swapping elements of the array. Give an upper bound on the
total expected number of swaps done by the algorithm when called on an array of n distinct
numbers. Use an indicator random variable M(x, i) ∈ {0, 1} that evaluates to 1 if and only if
the input number x is touched in the inner for-loop of the ith iteration of the outer for-loop.

2 Deterministic convex hull

Modify the two-dimensional convex hull algorithm from the lecture so that it runs in deter-
ministic O(n log n) time in the worst case. Instead of maintaining the lists of points for each
edge in lines 12 and 13, your algorithm should find the chain of edges to be removed in a
different way. Your algorithm may maintain additional data structures or preprocess the data
as you see fit. Analyse the running time and correctness of your modified algorithm.

3 Lower bound

Consider the following variant of the convex hull problem in R3. The input is a sequence
of points x1, . . . , xn in R3 in general position and given in sorted order with respect to their
third coordinate. The output is the graph of vertices and edges of conv({x1, . . . , xn}) given
by a doubly connected edge list (DCEL). Assume that the DCEL also stores the coordinates
of the vertices. Can you still show a lower bound of Ω(n log n) by reduction from sorting?
Explain your answer.



1 algorithm flatQuicksort(A,n)
2 // A is indexed from 1 to n
3

4 // fixed[i] maintains whether A[i] has been used as a pivot;
5 // includes sentinels at 0 and n+1, initialized to true,
6 // so that we do not go out of bounds on lines 22 and 24
7

8 fixed[0..n+1] := {true,false,false,...,false,true}
9

10 for i := 1 to n-1 do
11

12 // select random pivot
13 repeat
14 p := random number from {1,...,n}
15 until fixed[p] = false
16

17 pivot := A[p]
18

19 // scan left and right to find range
20 lo := p
21 hi := p
22 while not fixed[lo-1] do
23 lo := lo-1
24 while not fixed[hi+1] do
25 hi := hi+1
26

27 //move pivot to right end of range
28 swap A[p] with A[hi]
29

30 //partition the range
31 split := lo
32 for j := lo to hi do
33 if A[j] < pivot then
34 swap A[split] with A[j]
35 split := split + 1
36

37 //move pivot to splitting point
38 swap A[split] with A[hi]
39

40 fixed[split] := true
41

42 return


