
MA-INF 1203 Discrete and Computational Geometry

Wintersemester 2019/20
Assignment 1

To be discussed: **15/16.** October 2019

1 Asymptotic notations

i) In each of the following situations, determine whether $f(n) = O(g(n))$, or $f(n) = \Omega(g(n))$, or both (i.e. $f(n) = \Theta(g(n))$). We denote with $\log n$ the logarithm of base 2.

$f(n)$	$g(n)$
$100 \log n$	$\log(n^3)$
$n^{1.001}$	$n \log^{100} n$
$4^{\log n}$	n^2
$\sum_{i=1}^n \frac{1}{i}$	$\ln n$
$\sum_{i=1}^n \frac{1}{i}$	$\log n$
2^n	2^{n+5}
2^n	2^{2n}
$\binom{n}{5}$	n^5
$n!$	2^n
$\sum_{i=1}^c n^i$	n^c

ii) In each of the above situations determine whether $f(n) = o(g(n))$, or $f(n) = \omega(g(n))$, or none.

2 Probability Theory

Suppose that you play a simplified game of darts, in which the board is a square of side-length ℓ as depicted in Figure 1. Let D_0, \dots, D_5 be the concentric disks in Figure 1, with radii r_0, \dots, r_5 respectively. The rules are as follows: hitting D_0 scores 100 points, hitting $D_1 \setminus D_0$ scores 50 points, hitting $D_2 \setminus D_1$ scores 40 points, hitting $D_3 \setminus D_2$ scores 30 points, hitting $D_4 \setminus D_3$ scores 20 points, and hitting $D_5 \setminus D_4$ scores 10 points.

Let $r_0 = 2$, $r_1 = 3$, $r_2 = 4$, $r_3 = 5$, $r_4 = 6$, $r_5 = 7$ and $\ell = 16$. Assume that a dart hits a point on the board uniformly at random and any dart hits the board with probability 1.

- i) What is the probability of scoring at least 30 points?
- ii) What is the probability of scoring exactly 30 points?

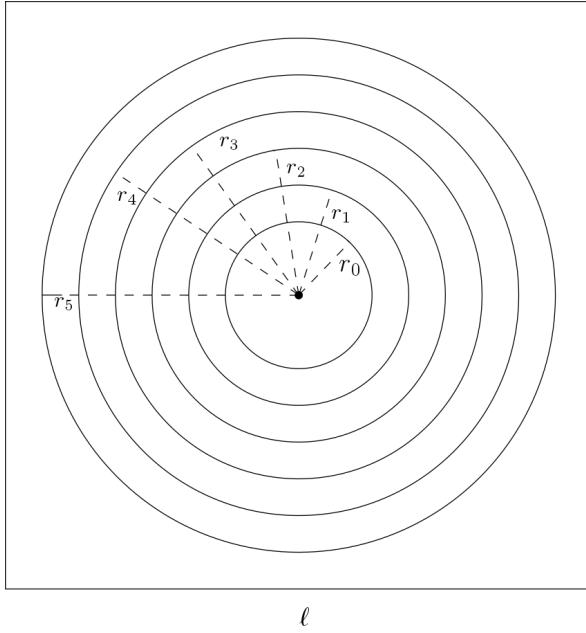


Figure 1

iii) What is the expected score?

Now consider a different set of rules: hitting D_0 in at least 1 out of 5 independent attempts gives a win, while otherwise the game is lost. Once again assume that each dart hits a point on the board uniformly at random and each dart hits the board with probability 1. The 5 independent attempts correspond to 5 independent shots.

iv) What is the probability of winning the game?

3 Recurrences

Note that $\log n$ denotes the logarithm of base 2.

i) Let $T(n) = 2T(\lfloor n/2 \rfloor) + n$, and $T(1) = 1$. Use mathematical induction to prove that $T(n) = O(n \log n)$. Please state explicitly the base case, the induction hypothesis and the inductive step.

ii) Solve the recurrence $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$, where $T(1) = 1$.

iii) Solve the recurrence

$$T(n) \leq \begin{cases} 1 & \text{if } n = 1 \\ 1 + \sum_i T(n_i) & \text{if } n > 1, \end{cases}$$

where $\sum_i n_i = n$, and each $n_i \leq 2n/3$.