

Advanced Algorithms

WS 2019/20 Homework 4

30.10.2019

Exercise 1:

Compute the table H for the pattern string 100011011011001.

Exercise 2:

- a) Prove the correctness of the algorithm COMPUTATION OF H .
- b) Give an exact analysis of the number of comparisons performed by the algorithm KMP.
- c) For $1 \leq r \leq m$ we have computed the values $H(r) = \max_{l < r} \{l \mid b_1 b_2 \dots b_{l-1} \text{ is suffix of } b_1 b_2 \dots b_{r-1}\}$. It is obvious that in the case $b_{H(i)} = b_r$ there holds $b_{H(i)} \neq a_j$. Hence, instead of $H(r)$ it would be better to compute the value $Next(r)$ where $Next(r) = \max_{l < r} \{l \mid b_1 b_2 \dots b_{l-1} \text{ is suffix of } b_1 b_2 \dots b_{r-1} \text{ and } b_l \neq b_r\}$. Develop an efficient algorithm for the computation of the table $Next$. Prove the correctness of your algorithm and analyze its needed time. Modify the algorithm KMP such that the table $Next$ instead of the table H is used.

Exercise 3:

Modify the algorithm KMP such that all occurrences of y in x are computed in $O(n + m)$ time. Extend the algorithm COMPUTATION OF H such that $H(m + 1)$ is also computed.

Exercise 4:

Modify the algorithm KMP such that the longest prefix of y which is a substring of x is computed.