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Ubungsblatt 12
Aufgabe 12.1

(a) Geben Sie eine zusitzliche Bedingung fiir die Potentialfunktion in Theorem 2.9 an, aus welcher strikte
Kompetitivitit folgt.

(b) Folgern Sie, fiir welche Start-Konfigurationen der Server der DC-Algorithmus auf Baumen strikt k-
kompetitiv ist.

Aufgabe 12.2
Sei G = (V, E) ein zusammenhingender, ungerichteter Graph mit positiven Kantengewichten w : E — R<g.

(a) Zeigen Sie: Jeder Spannbaum T liefert eine dominante Metrik dr fiir die durch G induzierte Metrik d.

(b) Sei sy der Streckungsfaktor einer Baummetrik dr gegeniiber der induzierten Metrik d. Geben Sie einen
st - k-kompetitiven Algorithmus fiir das k-Server Problem auf G an (und beweisen Sie dessen kompetitiven
Faktor).

(¢) Sei T'= (V, Er) ein minimaler Spannbaum von G. Zeigen Sie, dass sp < N — 1 gilt, wobei N = |V gilt.

Aufgabe 12.3

Sei n = a? fiir eine natiirliche Zahl a. Wir betrachten den metrischen Raum M = (M,d) mit M = {1,...,a} x
{1,...,a} und d((xl,xg), (yl,yg)) =|z1 —y1| + |22 — y2l|.

(a) Geben Sie einen k - (a 4 1)-kompetitiven deterministischen Online-Algorithmus fiir das k-Server-Problem
auf dem metrischen Raum M an.

(b) Geben Sie einen k - (% + 1)-kompetitiven randomisierten Online-Algorithmus fiir das k-Server-Problem
auf dem metrischen Raum M an.

Aufgabe 12.4

Wir betrachten metrische Rdume M = (M,d), fir die M C R”™ eine nichtleere konvexe Menge ist und die
Metrik d folgende Eigenschaft besitzt: Fiir je drei Punkte x,y,r € M, die auf einer Geraden liegen, wobei y
zwischen 2 und r liegt, und einen beliebigen Punkt p € M folgt aus d(x,p) < d(r,p), dass auch d(y, p) < d(r,p)
gilt.

(a) Zeigen Sie, dass der Raum R™, ausgestattet mit dem euklidischen Abstand, ein solcher Raum ist.

(b) Zeigen Sie, dass der SC 1 -Algorithmus 3-kompetitiv fiir das 2-Server-Problem in jedem solchen metrischen
Raum M ist.



