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Aufgabe 12.1

(a) Geben Sie eine zusätzliche Bedingung für die Potentialfunktion in Theorem 2.9 an, aus welcher strikte
Kompetitivität folgt.

(b) Folgern Sie, für welche Start-Konfigurationen der Server der DC-Algorithmus auf Bäumen strikt k-
kompetitiv ist.

Aufgabe 12.2

Sei G = (V,E) ein zusammenhängender, ungerichteter Graph mit positiven Kantengewichten w : E → R>0.

(a) Zeigen Sie: Jeder Spannbaum T liefert eine dominante Metrik dT für die durch G induzierte Metrik d.

(b) Sei sT der Streckungsfaktor einer Baummetrik dT gegenüber der induzierten Metrik d. Geben Sie einen
sT ·k-kompetitiven Algorithmus für das k-Server Problem auf G an (und beweisen Sie dessen kompetitiven
Faktor).

(c) Sei T = (V,ET ) ein minimaler Spannbaum von G. Zeigen Sie, dass sT ≤ N − 1 gilt, wobei N = |V | gilt.

Aufgabe 12.3

Sei n = a2 für eine natürliche Zahl a. Wir betrachten den metrischen RaumM = (M,d) mit M = {1, . . . , a}×
{1, . . . , a} und d

(
(x1, x2), (y1, y2)

)
= |x1 − y1|+ |x2 − y2|.

(a) Geben Sie einen k · (a + 1)-kompetitiven deterministischen Online-Algorithmus für das k-Server-Problem
auf dem metrischen Raum M an.

(b) Geben Sie einen k ·
(
a
2 + 1

)
-kompetitiven randomisierten Online-Algorithmus für das k-Server-Problem

auf dem metrischen Raum M an.

Aufgabe 12.4

Wir betrachten metrische Räume M = (M,d), für die M ⊆ Rn eine nichtleere konvexe Menge ist und die
Metrik d folgende Eigenschaft besitzt: Für je drei Punkte x, y, r ∈ M , die auf einer Geraden liegen, wobei y
zwischen x und r liegt, und einen beliebigen Punkt p ∈M folgt aus d(x, p) ≤ d(r, p), dass auch d(y, p) ≤ d(r, p)
gilt.

(a) Zeigen Sie, dass der Raum Rn, ausgestattet mit dem euklidischen Abstand, ein solcher Raum ist.

(b) Zeigen Sie, dass der SC 1
2
-Algorithmus 3-kompetitiv für das 2-Server-Problem in jedem solchen metrischen

Raum M ist.


