

## Problem Set 6

Please hand in your solutions for this problem set via email ([roesner@cs.uni-bonn.de](mailto:roesner@cs.uni-bonn.de)) or personally at Room 2.060 until *Tuesday, 27th of November*.

### Problem 1

Let us look at instances of the fair  $k$ -center problem. Show that the factor between the value of the optimal fair solution and the optimal unfair solution can be unbounded.

### Problem 2

What changes when we instead of calling **farthest-first-traversal**(( $P^0, d$ ),  $k$ ) in step 3 of the **fair-k-center** algorithm, we call **farthest-first-traversal**(( $P, d$ ),  $k$ ) to compute  $C$ ?

### Problem 3

We would like to extend the fair  $k$ -center problem to more general settings. Specifically we would like to replace the restriction that the clusters are  $(\frac{1}{t}, 1)$ -balanced for some  $t \in \mathbb{N}$ . Instead we would prefer to require that the clusters are  $(\ell, u)$ -balanced for arbitrary  $\ell \leq u \in \mathbb{Q}$ . Unfortunately we will see that this scenario seems to be more difficult.

- Assume that we know how the optimal fair clustering clusters the points in  $P^0$ . Show that we can then compute a 3-approximation.

One approach could now be to first compute an approximate unfair solution on  $P^0$  and then try to add the points from  $P^1$ .

- Show specifically for the case  $\ell = \text{ratio}(P, 0) = u$  that there are instances where it is impossible to make such a clustering obtained on  $P^0$  fair by adding the points from  $P^1$ .

We want to keep the focus on the exact case where we have  $\ell = \text{ratio}(P, 0) = u$ . Assume that  $\text{ratio}(P, 0) = \frac{a}{a+b}$  for some coprime integers  $a \leq b$ .

- Show that in every fair cluster the number of points from  $P^0$  must be an integer multiple of  $a$ .

For the next task we assume that we know an approximation algorithm for the capacitated  $k$ -center problem. The capacitated  $k$ -center problem is in addition to  $P$ ,  $d$  and  $k$  given a capacity  $cap$  and demands that each cluster contains at most  $cap$  points.

- Show how to compute a clustering on  $P^0$ , where the number of points in each cluster is an integer multiple of  $a$  and whose maximal radius is in  $O(opt)$ , where  $opt$  denotes the value of the optimal fair clustering.
- Use this clustering on  $P^0$  to compute a fair clustering. What approximation factor do you obtain?