

Problem Set 5

Please hand in your solutions for this problem set via email (roesner@cs.uni-bonn.de) or personally at Room 2.060 until *Tuesday, 20th of November*.

Problem 1

Let us look at the following algorithm inspired by the streaming algorithm for k -center.

1. **Set** $C_{|P|} = P$ **and** $\ell = \min_{p \neq q \in P} d(p, q)$.
2. **For** $k = |P| - 1$ **to** 1 **do**
3. **Set** $C_k = C_{k+1}$
4. **While** $|C_k| > k$ **do**
5. Compute $I \subseteq C_{k+1}$ by calling `maximal-independent-set`($G_\ell^2(C_{k+1})$)
6. Set $C_k := I$ and $\ell = 2 \cdot \ell$

It computes for every $k \in \{1, \dots, |P|\}$ a set C_k of at most k centers. Additionally we recursively define a cluster $\mathcal{C}_{p,k}$ for each point $p \in C_k$ as follows.

1. **For each** $p \in P$ **set** $\mathcal{C}_{p,|P|} = \{p\}$.
2. **For** $k = |P| - 1$ **to** 1 **do**
3. **For each** $p \in C_k$ **Set** $\mathcal{C}_{p,k} = \mathcal{C}_{p,k+1}$.
4. **For each** $p \in C_{k+1} \setminus C_k$
5. Let $n_p = \arg \min_{q \in C_k} d(p, q)$.
6. Set $\mathcal{C}_{n_p,k} = \mathcal{C}_{n_p,k} \cup \mathcal{C}_{p,k+1}$.

- Show that this algorithm induces a hierarchical clustering.
- Show an upper bound for its approximation factor.

Problem 2

We look at clustering with outliers. As before we would like to adjust an algorithm for the k -center problem with outliers to the k -supplier problem with outliers.

- Show how bad the approximation factor can become when we again start with approximating the k -center version and then replace every center with its closest location. That is, assume that we ignore all knowledge about the possible center locations and solve the k -center problem with outliers, but then use this solution for the k -supplier problem with outliers by moving the chosen centers to the closest possible location.

- What changes when we instead use an approximation algorithm for the k -center problem with outliers and forbidden centers? This means that we are allowed to define a set $F \subseteq P$ which we can not use as a center. In this case we are allowed to define up to $|P|$ different sets of forbidden centers and can compute a solution for each of them.

Problem 3

We look at the problem of assigning children to a kindergarten in a big city. Let P be the set which contains the kindergarten teachers and all children signed up to go to a kindergarten. Let $a : P \rightarrow \{T, C\}$ be a mapping that tells us whether $p \in P$ is a teacher ($a(p) = T$) or a child ($a(p) = C$). In addition we know the set L of the places, where the different kindergartens are located. An assignment $f : P \rightarrow L$ of children and teachers to kindergartens is called *fair* if all kindergartens have the same number of children per teacher assigned to them, i.e., for all $\ell \in L$ we have

$$ratio(\ell, C) := \frac{|\{x \in f^{-1}(\ell) \mid a(x) = C\}|}{|f^{-1}(\ell)|} = \frac{|\{x \in P \mid a(x) = C\}|}{|P|} =: ratio(P, C).$$

(Notice that this implies that $ratio(\ell, T) = ratio(P, T)$). Assume that the number of children in P is equal to t times the number of teachers in P for an integer $t \in \mathbb{N}$ ($ratio(P, T) = 1/(t+1)$). If we assume that each of the teachers is already employed by one of the kindergartens show how a fair assignment of the children to the kindergartens, which minimizes the maximum distance a parent has to go to bring their child to its kindergarten, can be computed.