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Gittins Index Theorem

Instructor: Thomas Kesselheim

Suppose you are the boss of a large company. You company is producing a well-running
product out of which you make a profit of 10 units of money per year. You can keep the
production running as it is, or you can invest the profits into research and development. Chances
are that after five years of development, you can decrease the production cost and make a profit
of 11 units of money per year. However, you have to spend your entire profits during this time
and there is still a 50 % chance that after five years you realize that the development failed.
Then, of course, you can still keep your production running, keeping the profit of 10 units of
money per year. Under what circumstances would you decide to invest?

This problem is an example of special case of a Markov decision process, which we will get
to know today. The theory of Markov decision processes applies and, as we have an infinite
time horizon, one could compute an optimal policy via linear programming, value iteration, and
so on. However, the state space will be quite huge and the optimal policies have a particularly
nice structure.

1 Markovian Multi-Armed Bandits

The class of Markov decision processes is called Markovian multi-armed bandits. Let us first
define a single-armed bandit. This is a Markov decision process that has only two actions
A = {play, pause}. The state transitions and rewards for action play are arbitrary, but
ppause(s, s) = 1, rpause(s) = 0 for all s ∈ S. That is, when using action pause, the process
remains in its state and gives no reward.
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Figure 1: A simple example of two arms. For large values of γ, it is better to play the first arm
first. Depending on the outcome, one then continues with the first or the second arm.

A multi-armed bandit is a parallel composition of such single-armed bandits. We have
S = S1× . . .×Sn, where Si is the state space of the ith single-armed bandits. Available actions
are A = {play1, . . . , playn, pause}, where playi means that we run the play action on the
ith single-armed bandit and pause on any other. So the different single-armed bandits operate
independently but we may only play one arm at a time.

We consider the infinite time-horizon setting with discounts, so for a policy π

V (π, s0) = E

[ ∞∑
t=0

γtraπt (sπt )

]
.
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Recall that the value of an optimal policy is given as

V ∗(s) = max
a∈A

(
ra(s) + γ

∑
s′∈S

pa(s, s
′)V ∗(s′)

)
.

Note that when a Markovian policy (for example an optimal policy) decides to pause, it
remains in the state and therefore will keep pausing from now on and not resume playing an
arm again. If γ = 1 then it would be irrelevant in which order we play the arms. However,
because γ < 1, time is the distinguishing factor.

We could always myopically choose the arm with the highest upcoming reward. However, in
the example above, we would want to play the arm once without getting any reward and then
play it again to get some big reward.

2 Single-Armed Bandit with Charges

To better understand what is happening, we first consider only the single-arm problem. Suppose
you had to pay λ every time you played the arm. Then the value of the optimal policy starting
at state s would be (see last lecture)

V ∗(s, λ) = max

{
0, rplay(s)− λ+ γ

∑
s′∈S

pplay(s, s
′)V ∗(s′, λ)

}
.

Observe that for larger charges λ the value V ∗(s, λ) gets smaller and smaller. This means, there
is some amount δ(s) that makes the optimal policy only exactly as good as not playing at all.
Formally, δ(s) = sup{λ | V ∗(s, λ) > 0} = inf{λ | V ∗(s, λ) = 0}. This is the fair charge of state
s.

Based on the fair charges δ(s), it is very easy to describe an optimal policy for the arm with
charge λ: Whenever in a state s with δ(s) ≥ λ choose play, whenever in a state s with δ(s) < λ
choose pause.1
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Figure 2: A simple example of one deterministic arm with fair charges for γ = 1
2 .

We can bound the reward of a policy by the fair charges of the states during its execution.

Lemma 14.1. Consider a policy for a single arm that first only chooses play and then only
chooses pause. Let τ be the index of the step in which it chooses pause for the first time. Then

E

[
τ−1∑
t=0

γtrplay(st)

]
≤ E

[
τ−1∑
t=0

γt min
t′≤t

δ(st′)

]

with equality if δ(sτ ) = mint′≤τ δ(st′) with probability 1.

Proof. Let us first consider the case of a policy for which δ(sτ ) = mint′≤τ δ(st′) with probability
1. So, this is a policy which only stops playing when reaching a state that has the smallest fair
charge it has seen so far. Any execution of such a policy naturally decomposes into phases of
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Figure 3: Phases in the proof of Lemma 14.1.

random length: Let τ0 = 0 and let τk+1 be the first time step t > τk at which δ(st) < δ(sτk)
(see Figure 3). The policy chooses pause at some point in time τk.

An alternative way to view the phases is as follows. Fix everything that happens until time
τk. At time τk, start an optimal policy for the arm with charges δ(τk). This optimal policy
stops exactly at time τk+1 because this is the first time that the charge exceeds the fair charge.
The expected reward of this optimal policy starting at time τk with charge δ(sτk) is exactly 0.
So,

E

τk+1−1∑
t=τk

γt−τk
(
(rplay(st)− δ(sτk)

) ∣∣∣∣∣∣ τk
 = 0 .

Equivalently,

E

τk+1−1∑
t=τk

γtrplay(st)

∣∣∣∣∣∣ τk
 = E

τk+1−1∑
t=τk

γtδ(sτk)

∣∣∣∣∣∣ τk
 = E

τk+1−1∑
t=τk

γt min
t′≤t

δ(st′)

∣∣∣∣∣∣ τk
 .

Taking the sum over all k, the equality in the lemma follows.
To get the upper bound for a general policy, we can follow the argument above with the

exception that the policy might stop one of its sub-phases early. In this case, the fair cost of the
current state is higher than the charge. This means that expected reward for this sub-phase is
at most 0.

Lemma 14.2. Consider an arbitrary policy for a single arm and let the indices of steps in
which it plays the arm be denoted by T (possibly random, depending on previous states). Then

E

[∑
t∈T

γtrplay(st)

]
≤ E

[∑
t∈T

γt min
t′≤t

δ(st′)

]
with equality if δ(st) = mint′≤t δ(st′) for all t 6∈ T with probability 1.

Proof. Note that Lemma 14.1 is exactly the case that T = {0, 1, . . . , τ − 1}.
It is easy to extend the lemma to the case T = {t′, . . . , t′+τ −1} because then δ(s0) = . . . =

δ(st′) and both sides get multiplied by the same γt
′
.

In general, T can be considered a union of disjoint intervals, each of which has the form
{t′, . . . , t′ + τ − 1}. By adding up the resulting inequalities, the lemma follows.

3 Gittins Index Theorem

If we have multiple arms, then we get a different value function for each arm

Vi(s, λ) = max

{
0, rplay,i(s)− λ+ γ

∑
s′∈S

pplay,i(s, s
′)V (s′, λ)

}
.

1For δ(s) = λ actually both choices are equally good.
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So Vi(s, λ) is the maximum expected reward that we could get out of arm i if each play costs
an additional λ. Note that Vi(s) only depends on the state of the ith arm, not on the states of
the other arms.

For each arm i and each state, we again get a fair charge

δi(s) = sup{λ | Vi(s, λ) > 0} = inf{λ | Vi(s, λ) = 0} .

We call this fair charge the Gittins index of the arm in state s.2

Our main result for today is as follows.

Theorem 14.3. It is an optimal policy to always play the arm with the highest Gittins index.

Proof. To prove the theorem, let Ti be the set of steps in which the Gittins index policy plays arm
i. Let us observe how the Gittins index δi(st) changes over time. If t 6∈ Ti, then δi(st+1) = δi(st).
If t ∈ Ti then δi(st+1) can differ from δi(st). If it gets larger, then we keep playing the arm. We
only stop playing the arm when its index falls below the value that we started from, meaning
it is an all-time low. In other words, if t 6∈ Ti then δi(st) ≤ mint′≤t δi(st′).

This allows us to invoke Lemma 14.2. We know that the expected reward from playing arm
i is exactly

E

∑
t∈Ti

γt min
t′≤t

δi(st)


and so the overall expected reward is exactly

Q =

n∑
i=1

E

∑
t∈Ti

γt min
t′≤t

δi(st)


For any other policy, we get different values of Ti and δi(st) but by Lemma 14.2 its expected

reward is still upper-bounded by the respectiveQ. Therefore, it is sufficient to show the following
proposition.

Proposition 14.4. Among all policies, the Gittins index policy maximizes

Q = E

 n∑
i=1

∑
t∈Ti

γt min
t′≤t

δi(st)

 .

We compare an arbitrary policy π to the Gittins index policy. For simplicity of the argument,
we assume that both policies play each arm infinitely often. The spirit of the argument does
not change without this assumption but things get much more messy.

For policy π as well as for the Gittins index policy, let us denote by xt or yt respectively,
the value of mint′≤t δi(st) for the arm i chosen in step t.

Arm i randomly transitions from one state in Si to another one, every time it is played.
Let us fix these transitions arbitrarily. This way, the sequences x1, x2, . . . and y1, y2, . . . are not
random anymore but fixed. Furthermore, they contain exactly the same numbers because each
arm makes the same state transitions, only the order varies.

For the Gittins index policy, we have y1 ≥ y2 ≥ . . ., so the sequence is non-increasing.
Therefore, now

Qπ =

∞∑
t=0

γtxt ≤
∞∑
t=0

γtyt = QGittins .

This holds for any fixed transitioning of each single arm, so it also holds in expectation.
2The original definition by Gittins and Jones is a little different but has the same consequences.



Algorithms and Uncertainty, Winter 2018/19 Lecture 14 (page 5 of 5)

Further Reading

• On the Gittins Index for Multiarmed Bandits, R. Weber, Ann. Appl. Probab. (This
proof without formulas)

• Four proofs of Gittins’ multiarmed bandit theorem, E. Frostig, G. Weiss, Applied Proba-
bility Trust (This and other proofs, with heavy notation)


