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Exercise Set 3

Exercise 1: (4 Points)
Let us consider a generalization of the version of Markov decision processes covered in the
lecture. For every state s ∈ S, only a subset of the actions As ⊆ A, As 6= ∅, is available.
Devise an algorithm that computes an optimal policy for a finite time horizon T , show its
correctness, and give a bound on its running time.

Exercise 2: (1+5 Points)
We consider a stochastic decision problem similar to the one with the envelopes we solved in
class. There are n boxes; box i contains a prize of 1 Euro with probability qi and is empty
otherwise. The game ends when we have found a non-empty box. That is, the final prize is
either 0 Euros or 1 Euro. At each point in time, we can also decide to stop playing. We can
open as many boxes as we like but opening box i costs ci Euros.

(a) Model this problem as a Markov decision process. In particular, give the state and
action sets as well as transition probabilities and rewards.

(b) Find an optimal policy.

Hint: It can be useful to consider the cases n = 1 and n = 2 first.

Exercise 3: (1+1+2+4 Points)
We generalize the optimal stopping problem with known distributions. Now, the policy is
allowed to stop k times and collect the reward vi each time it stops. (So, the reward is
additive.)

(a) Model this problem as a Markov decision process.

(b) Give an example in which the optimal policy cannot be expressed by a sequence of
thresholds τ1, . . . , τn.

(c) Find an appropriate generalization of Theorem 7.2.

(d) Generalize Theorem 7.4 and prove the generalization. As τ , use a threshold so that in
expectation the sequence gets stopped k

2
times and make use of Markov’s inequality.

Exercise 4: (2 Points)
Consider the cost-minimization variant of the optimal stopping problem. In step i, we can
stop the sequence at cost ci. We have to stop the sequence at some point and want to
minimize the cost for doing so.
Show that there is no α < ∞ such that for all distributions the optimal policy has cost at
most αE[mini ci].


