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Algorithms and Uncertainty
Winter Semester 2018/19
Exercise Set 3

Exercise 1: (4 Points)
Let us consider a generalization of the version of Markov decision processes covered in the
lecture. For every state s € S, only a subset of the actions A, C A, A, # (), is available.
Devise an algorithm that computes an optimal policy for a finite time horizon T', show its
correctness, and give a bound on its running time.

Exercise 2: (145 Points)
We consider a stochastic decision problem similar to the one with the envelopes we solved in
class. There are n boxes; box i contains a prize of 1 Euro with probability ¢; and is empty
otherwise. The game ends when we have found a non-empty box. That is, the final prize is
either 0 Euros or 1 Euro. At each point in time, we can also decide to stop playing. We can
open as many boxes as we like but opening box 7 costs ¢; Euros.

(a) Model this problem as a Markov decision process. In particular, give the state and
action sets as well as transition probabilities and rewards.

(b) Find an optimal policy.

Hint: It can be useful to consider the cases n = 1 and n = 2 first.

Exercise 3: (14+142+4 Points)
We generalize the optimal stopping problem with known distributions. Now, the policy is
allowed to stop k times and collect the reward v; each time it stops. (So, the reward is
additive.)

(a) Model this problem as a Markov decision process.

(b) Give an example in which the optimal policy cannot be expressed by a sequence of
thresholds 74, ..., 7,.

(c¢) Find an appropriate generalization of Theorem 7.2.

(d) Generalize Theorem 7.4 and prove the generalization. As 7, use a threshold so that in
expectation the sequence gets stopped g times and make use of Markov’s inequality.

Exercise 4: (2 Points)
Consider the cost-minimization variant of the optimal stopping problem. In step i, we can
stop the sequence at cost c;. We have to stop the sequence at some point and want to
minimize the cost for doing so.

Show that there is no o < oo such that for all distributions the optimal policy has cost at
most aE[min; ¢;].



