

Algorithmic Game Theory

Summer Term 2024

Tutorial Session - Week 9

*You are supposed to work on these tasks in class together with your fellow students.
Please find groups of 2 or 3 students!*

Exercise 1:

Consider the following instance of the house-allocation problem. There are six agents a, \dots, f and their preferences are given by:

$$\begin{array}{ll} a : f > d > e > c > a > b, & b : a > c > e > f > b > d, \\ c : e > f > a > c > b > d, & d : f > a > b > c > d > e, \\ e : d > e > c > b > f > a, & f : e > a > b > c > f > d. \end{array}$$

Find a stable allocation π using the Top Trading Cycle Algorithm.

Exercise 2:

In the Top Trading Cycle Algorithm initially player i owns house i . Consider a group $S \subseteq \{1, \dots, n\}$ of players trying to cheat in the following way: The agents in S permute their houses before entering the mechanism. However, they reveal their preferences over houses truthfully.

Is there an instance where it is possible for a group S to improve at least one player in S by cheating in the above way while no other player of S gets worse? Prove your answer.