

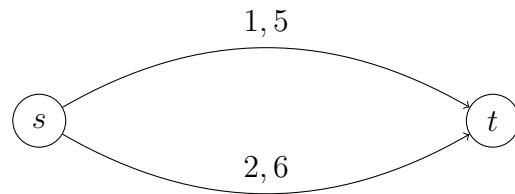
Algorithmic Game Theory

Summer Term 2024

Tutorial Session - Week 4

*You are supposed to work on these tasks in class together with your fellow students.
Please find groups of 2 or 3 students!*

Exercise 1:


Analogous to the auctions that we defined in the lecture, we will consider the following *Third-Price Auction*. Just like in the first- and second-price auctions, bidders simultaneously submit their bids $b_i \geq 0$ and the winner will be determined as the bidder with the highest bid. Finally, the mechanism will make him/her pay the third highest bid. Prove that the described mechanism is not truthful.

Exercise 2:

Referring to the price of anarchy from Lecture 8 we can introduce a more optimistic point of view called the *price of stability*. For an equilibrium concept \mathbf{Eq} , it is defined as

$$PoS_{\mathbf{Eq}} = \frac{\min_{p \in \mathbf{Eq}} SC(p)}{\min_{s \in S} SC(s)} .$$

Consider the following symmetric network congestion game with two players:

- What is the Price of Anarchy and the Price of Stability of pure Nash equilibria?
- What is the Price of Anarchy and the Price of Stability of mixed Nash equilibria?