

Algorithmic Game Theory

Summer Term 2023

Exercise Set 4

If you want to hand in your solutions for this problem set, please send them via email to anna.heuser@uni-bonn.de by Tuesday evening – make sure to send a pdf-file which contains your name and your email address. Of course, submitting solutions in groups is also possible.

*If you would like to present one of the solutions in class, please also send an email to anna.heuser@uni-bonn.de containing the **task** which you would like to present and in **which of the tutorials** you would like to do so. Deadline for the email is Tuesday, 10:00 pm. Please note that the tasks will be allocated via a first-come-first-served procedure, so sending this email earlier than Tuesday evening is highly recommended.*

Exercise 1: (3+3 Points)

We want to derive properties of the sets of correlated and coarse correlated equilibria.

- Show that the set of correlated equilibria of a cost-minimization game Γ is convex, i.e. for two correlated equilibria p, p' and $\lambda \in [0, 1]$, also $\lambda p + (1 - \lambda)p'$ is a correlated equilibrium.
- Show that every correlated equilibrium is also a coarse correlated equilibrium.

Exercise 2: (4+4 Points)

Consider the following regret-minimization-algorithm.

GREEDY

- Set $p_1^1 = 1$ and $p_j^1 = 0$ for all $j \neq 1$.
- In each round $t = 1, \dots, T$:

Let $L_{min}^t = \min_{i \in N} L_i^t$ for $L_i^t = \sum_{t' \leq t} \ell_i^{(t')}$ and $S^t = \{i \in N \mid L_i^t = L_{min}^t\}$.
Set $p_i^{t+1} = 1$ for $i = \min S^t$ and $p_j^{t+1} = 0$ otherwise.

You can assume that $\ell_i^{(t)} \in \{0, 1\}$ for all i and t .

- Show that the costs of GREEDY are at most $N \cdot L_{min}^T + (N - 1)$.
- State a scheme for an example such that the stated upper bound of (a) is tight for an infinite number of values T .

Exercise 3: (5 Points)

We consider the Multiplicative-Weights Algorithm with a slightly modified update rule. Instead of using $w_i^{(t+1)} = w_i^{(t)} \cdot (1 - \eta)^{\ell_i^{(t)}}$, we now use $w_i^{(t+1)} = w_i^{(t)} \cdot (1 - \eta \cdot \ell_i^{(t)})$. Prove a statement as in Proposition 7.7. for this modified update rule.