

Algorithms and Uncertainty

Summer Term 2021

Tutorial Session - Live Tasks 9

Exercise 1:

Show that every no-regret algorithm in the experts setting has to be randomized. Consider the case $n = 2$ and for every deterministic algorithm construct a sequence such that $L_{\text{Alg}}^{(T)} = T$ and $\min_i L_i^{(T)} \leq \frac{T}{2}$.

Exercise 2:

Let each $l_i^{(t)} \in \{0, 1\}$. We consider the following Greedy algorithm. In each step t , the algorithm selects I_t which satisfies $I_t = \arg \min_{i \in [n]} L_i^{(t-1)}$, i.e. the expert with the best cumulative cost so far (ties are broken adversarially).

- (a) Show that $L_{\text{Alg}}^{(T)} \leq n \cdot \min_i L_i^{(T)} + (n - 1)$
- (b) Is the result of (a) surprising? Argue by the use of an appropriate lower bound.