

Algorithms and Uncertainty

Summer Term 2021

Tutorial Session - Week 4

Exercise 1:

We consider the following stochastic decision problem: There are n boxes; box i contains a prize of 1 Euro with probability q_i and is empty otherwise. The game ends when we have found a non-empty box. That is, the final prize is either 0 Euros or 1 Euro. At each point in time, we can also decide to stop playing. We can open as many boxes as we like but opening box i costs c_i Euros.

Model this problem as a Markov decision process. In particular, give the state and action sets as well as transition probabilities and rewards.

Bonus Task:

Show that no randomized algorithm for the online bipartite matching problem is strictly c -competitive for $c > \frac{3}{4}$.

Hint: You can mainly use the idea from the lecture - in addition, you should consider that a randomized algorithm is allowed to match two vertices with some probability instead of fixing one particular edge.