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Today, we will get to know another very surprising application of the experts framework.
We will use it to solve the Maximum-Flow Problem. Our algorithm will be slow but it follows
the same pattern that the fastest known algorithms for this problem use.

1 Max-Flow Problem

We are given a graph G = (V,E) with edge capacities (ce)e∈E and a dedicated source node
s ∈ V and sink node t ∈ V . Let P be the set of all paths from s to t. Our goal is to assign
flow values (xP )P∈P to the s-t-paths such that xP ≥ 0 for all P , no edge has more flow than its
capacity, i.e.,

∑
P :e∈P xP ≤ ce for all e ∈ E, and

∑
P∈P xP is maximized.

This problem can also be stated as a linear program as follows.

maximize
∑
P∈P

xP

subject to
∑
P :e∈P

xP ≤ ce for all e ∈ E

xP ≥ 0 for all P ∈ P

2 Recap: No-Regret Learning

Let us quickly recap the framework of no-regret learning. We rephrase it slightly to better fit
our needs for today. There are m actions (experts) we can choose from in every step. There
is a sequence of initially unknown gain vectors g(1), . . . , g(T ). Choosing action i in step t gives

gain g
(t)
i ∈ [0, 1]. In step t, the algorithm first chooses a probability vector y(t), then it incurs

gain g
(t)
Alg =

∑m
i=1 y

(t)
i g

(t)
i and gets to know the entire vector g(t). To avoid any confusion with

the paths, we call the probability vector y(t) today.
The regret of the algorithm is defined as

Regret(T ) = G(T )
max −G

(T )
Alg ,

where G
(T )
max = maxi

∑T
t=1 g

(t)
i and G

(T )
Alg =

∑T
t=1 g

(t)
Alg =

∑T
t=1

∑m
i=1 y

(t)
i g

(t)
i .

The Multiplicative Weights algorithm guarantees

G
(T )
Alg ≥ (1− η)G(T )

max −
lnm

η
.

So, Regret(T ) ≤ ηG(T )
max + lnm

η .

3 Algorithm Intuition

We design an algorithm based on the experts framework. It is, indeed, more or less the same
algorithm that was proposed by Garg and Könemann, although they actually do not talk about
regret. The algorithm actually works, just as it is, for multi-commodity flow.
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The idea behind the algorithm is simple but maybe not intuitive. Like many other flow
algorithms, we choose shortest paths from s to t and route as much flow along these edges as
possible. The Edmonds-Karp algorithm chooses a path that minimizes the number of edges
and then changes the network to a residual network. Our algorithm is different: It changes the
lengths of the edges. At this point, the experts algorithm comes into play: We let it define the
edge lengths. This is done by considering each edge as an expert and the probability that it
puts on an expert as the respective edge length.

4 Flows and Edge Lengths

There is an important connection between edge lengths and flows, which we state in the following
necessary condition for the existence of a flow.1

Lemma 22.1. If there is a flow of value F ∗, then for all choices of edge lengths (ye)e∈E with∑
e∈E ye = 1 there is a path P such that

∑
e∈P

ye
ce
≤ 1

F ∗ .

Proof. For any feasible LP solution x we have∑
P :e∈P

1

ce
xP ≤ 1 for all e ∈ E .

This also implies ∑
e∈E

ye
∑
P :e∈P

1

ce
xP ≤

∑
e∈E

ye = 1 .

We can also reorder the left-hand side to

∑
e∈E

ye
∑
P :e∈P

1

ce
xP =

∑
P∈P

(∑
e∈P

ye
ce

)
xP .

Now suppose that
∑

e∈P
ye
ce
> 1

F ∗ for all paths P . Then this immediately implies that also

∑
P∈P

xP < F ∗
∑
P∈P

(∑
e∈P

ye
ce

)
xP ≤ F ∗ .

So, there could be no flow of value F ∗.

Note that finding such a path algorithmically is easy: Just compute the shortest path.
Our algorithm uses Lemma 22.1 as follows. An experts algorithm sets edge lengths (which

are expressed through a probability distribution over edges). This way, it tries to “convince” us
that there is no flow of value F ∗. We then compute the shortest path and this way show that
the edge lengths are no counterexample. The expert algorithm’s gain is the length of the path
that we found and used. Then, the experts algorithm updates the edge lengths based on which
path we chose.

1Actually, it is not only necessary but also sufficient. More on this later.
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5 Algorithm

We now formally define the algorithm. We use an arbitrary experts algorithm as a subroutine.

• For t = 1, . . . , T

– Get probability distribution y(t) from the experts algorithm.

– Compute P (t) as the shortest path with edge lengths y
(t)
e
ce

– Let c(t) = mine∈P (t) ce

– Let (x
(t)
P )P∈P be a vector such that xP (t) = c(t) and xP = 0 for P 6= P (t).

– Return g(t) back to the experts algorithm, where

g(t)e =

{
c(t)

ce
if e ∈ P (t)

0 otherwise

• Compute x̄ =
∑T

t=1 x
(t), G

(T )
max = maxe∈E

∑T
t=1 g

(t)
e

• Return x = 1

G
(T )
max

x̄

Interestingly, using any no-regret algorithm, this algorithm always computes a 1−ε-approximate
flow if the number of iterations, T , is chosen large enough.

Lemma 22.2. The algorithm computes a feasible flow x.

Proof. Note that for every edge e ∈ E

T∑
t=1

g(t)e =
∑

t:e∈P (t)

c(t)

ce
=

1

ce

∑
t:e∈P (t)

c(t) =
1

ce

T∑
t=1

∑
P :e∈P

x
(t)
P =

1

ce

∑
P :e∈P

x̄P .

This also means

G(T )
max = max

e∈E

1

ce

∑
P :e∈P

x̄P .

So G
(T )
max is exactly the maximum factor by which x̄ exceeds an edge capacity. Therefore, it is

clear that the flow x is feasible.

Lemma 22.3. The flow x has value at least F ∗(1 − 1

G
(T )
max

Regret(T )), where F ∗ is the value of

an optimal flow.

Proof. First, we will argue that the expert algorithm’s gain cannot be high because we always
choose the shortest path with respect to the current weights. This lets us upper-bound the
algorithm’s gain in terms of the flow that we compute. Afterwards, we use the no-regret
property of the experts algorithm, which gives us a lower bound on its gain.

Consider any step t. The expert algorithm’s gain in this step is given by

g
(t)
Alg =

∑
e∈E

y(t)e g(t)e =
∑
e∈P (t)

y(t)e
c(t)

ce
= c(t)

∑
e∈P (t)

y
(t)
e

ce
.
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Recall that P (t) was is a shortest path with respect to edge lengths

(
y
(t)
e
ce

)
e∈E

. So, by Lemma 22.1,

∑
e∈P (t)

y
(t)
e

ce
≤ 1

F ∗
,

meaning that g
(t)
Alg ≤

c(t)

F ∗ . Using that

T∑
t=1

c(t) =
∑
P∈P

x̄P ,

we observe that

G
(T )
Alg =

T∑
t=1

g
(t)
Alg ≤

1

F ∗

∑
P∈P

x̄P =
G

(T )
max

F ∗

∑
P∈P

xP .

Recall that Regret(T ) = G
(T )
max −G(T )

Alg. So, this gives us

G
(T )
max

F ∗

∑
P∈P

xP ≥ G(T )
max − Regret(T )

and so ∑
P∈P

xP ≥ F ∗
(

1− Regret(T )

G
(T )
max

)
.

Note that this bound only is meaningful if G
(T )
max is large. Fortunately, this is true in our

case.

Lemma 22.4. The gain vectors g(1), . . . , g(T ) generated by the algorithm fulfill

G(T )
max ≥

T

m
.

Proof. Observe that in each step t there is an edge e such that g
(t)
e = 1, therefore

G(T )
max = max

e∈E

T∑
t=1

g(t)e ≥
1

m

∑
e∈E

T∑
t=1

g(t)e ≥
T

m
.

If we combine these lemmas, then as long as we use a no-regret algorithm, that is, Regret(T ) =
o(T ), then the flow value approaches F ∗ asymptotically for larger and larger T .

6 Guarantee with Multiplicative Weights

Let us now derive a quantitative bound if we use Multiplicative Weights. It actually pays off to
be a little careful and to not just use the O(

√
T logm) regret guarantee. Recall that the regret

guarantee in case of m experts is

Regret(T ) ≤ ηG(T )
max +

lnm

η
,
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so the above guarantee becomes

∑
P∈P

xP ≥ F ∗
(

1− η − 1

G
(T )
max

lnm

η

)
≥ F ∗

(
1− η − m

T

lnm

η

)
.

If we choose η = ε
2 and T = 2

εm lnm, then
∑

P∈P xP ≥ F ∗(1− ε).

Theorem 22.5. With Multiplicative Weights, the algorithm computes a (1 − ε)-approximate
flow using 1

2εm lnm shortest-path computations. Its overall running time is O(1εm
2 lnm).

7 What is really happening?

One may wonder: Why does this work? As often, the answer is simple and complicated at the
same time: It is because of strong LP duality. The dual of the flow LP (in the path formulation
from above) is:

minimize
∑
e∈E

ceze

subject to
∑
e∈P

ze ≥ 1 for all P ∈ P

ze ≥ 0 for all e ∈ E

The necessary condition stated in Lemma 22.1 is indeed nothing but weak duality for this LP
(define ze = ye

ceF ∗ ).
Strong duality tells us that the condition in Lemma 22.1 is actually also sufficient and our

algorithm is a constructive proof of strong duality. It tries to find a solution to the primal
and the dual LP by iteratively adapting the primal and dual solution in a way similar to the
algorithm for online set cover that we saw earlier.

The pair of a primal and a dual solution can be understood as an equilibrium of a game.
This is what we will talk about next time.
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