
Algorithms and Uncertainty, Summer 2020 Lecture 18 (5 pages)

No-Regret Learning: Multi-Armed Bandits 2

Thomas Kesselheim Last Update: June 26, 2020

1 Last Lectures

In the last lecture, we turned the Multiplicative Weights algorithm from the lecture before into
one that works with bandit feedback.

We can choose from n actions in every step. An adversary determines the sequence of cost

vectors `(1), . . . , `(T ) in advance, `
(t)
i ∈ [0, 1]. The sequence is unknown to the algorithm. In step

t, the algorithm chooses one of the n actions at random by defining probabilities p
(t)
1 , . . . p

(t)
n .

The algorithm’s choice in step t is denoted by It. The algorithm gets to know `
(t)
It

. The other
entries of the cost vector remain unknown.

We used the Multiplicative Weights algorithm in a way that we could reuse the regret bound

by computing “fake costs” ˜̀(t)
i . The final combined algorithm then looks as follows, using γ, η,

and ρ as parameters.

• Initially, set w
(1)
i = 1, p

(1)
i = 1

n , for every i ∈ [n].

• At every time t

– Define q
(t)
i = (1− γ)p

(t)
i + γ

n .

– Choose It based on q(t).

– Define ˜̀(t)
It

= `
(t)
It
/q

(t)
It

and ˜̀(t)
i = 0 for i 6= It

– Multiplicative-Weights Update:

∗ Set w
(t+1)
i = w

(t)
i · exp

(
−η 1

ρ
˜̀(t)
i

)
∗ W (t+1) =

∑n
i=1w

(t+1)
i

∗ p(t+1)
i = w

(t+1)
i /W (t+1)

We set γ = 3

√
n lnn
T , η = ln (1− γ) and ρ = n

γ to get a regret bound of 3(n lnn)1/3T 2/3. Note

that we use the weight update w
(t+1)
i = w

(t)
i ·exp

(
−η 1

ρ
˜̀(t)
i

)
instead of w

(t+1)
i = w

(t)
i ·(1−η)

1
ρ
˜̀(t)
i ,

which is only a different parameterization.

2 The Exp3 Algorithm

There is a way to improve the regret guarantee to O(
√
nT log n), which we will get to know

today. The algorithm is called Exp3, which stands for “Explore and Exploit with Exponential
Weights”. And, in fact, we already know the algorithm. It is exactly the one listed above but
with a smarter choice of parameters and a more careful analysis.

Our original analysis of the multiplicative-weights update could only deal with cost vectors

such that 0 ≤ ˜̀(t)
i ≤ ρ. Now, a single entry ˜̀(t)

i can be as large as n
γ . This is why we chose

ρ = n
γ . Exp3 instead sets ρ = 1. This means, the update step is much more aggressive than

with our previous parameter choice. The vague idea to keep in mind why this is reasonable is



Algorithms and Uncertainty, Summer 2020 Lecture 18 (page 2 of 5)

that ˜̀(t)
i = 0 most of the time. The fake cost is only non-zero if this is the action that has just

been chosen.
The other parameters, γ and η, will be determined later.

3 A Refined Bound of the Multiplicative-Weights Update

The key to prove the regret guarantee of Exp3 is a more careful analysis of the multiplicative-

weights update, now allowing ˜̀(t)
i > 1 despite setting ρ = 1. We can show the following bound.

Lemma 18.1. Fix ˜̀(1), . . . , ˜̀(T ) arbitrarily such that 0 ≤ ˜̀(t)
i ≤

1
η for all i and t. Then the

vectors p(1), . . . , p(T ) computed by the multiplicative-weights update (with ρ = 1) fulfill

T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i − η

T∑
t=1

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2
≤ min

i

T∑
t=1

˜̀(t)
i +

lnn

η
.

Proof. We prove this bound in a very similar way to our original analysis of the multiplicative
weights algorithm. We again use the sum of the weights W (t) to (a) lower-bound any expert’s
cost as well as to (b) upper-bound the algorithm’s cost. Combining these two bounds then lets
us compare the algorithm’s cost to any experts costs.

For part (a), that is the lower bound, we use that for all experts i

W (T+1) ≥ w(T+1)
i = exp

(
−η

T∑
t=1

˜̀(t)
i

)
.

Taking the logarithm, this is equivalent to

lnW (T+1) ≥ −ηmin
i

T∑
t=1

˜̀(t)
i . (1)

For part (b), that is the upper bound, we consider the weight changes in step t. We have

W (t+1) =

n∑
i=1

w
(t)
i e−η

˜̀(t)
i .

We use that ez ≤ 1 + z + z2 for −1 ≤ z ≤ 1.

1 + z + z2

exp(z)



Algorithms and Uncertainty, Summer 2020 Lecture 18 (page 3 of 5)

So, we have e−η
˜̀(t)
i ≤ 1− η ˜̀(t)

i +
(
η ˜̀(t)
i

)2
because 0 ≤ η ˜̀(t)

i ≤ 1. Furthermore, note that we

can write w
(t)
i = W (t)p

(t)
i to get

W (t+1) ≤
n∑
i=1

w
(t)
i

(
1− η ˜̀(t)

i +
(
η ˜̀(t)
i

)2)

=
n∑
i=1

w
(t)
i −

n∑
i=1

w
(t)
i η ˜̀(t)

i +
n∑
i=1

w
(t)
i

(
η ˜̀(t)
i

)2
= W (t)

(
1− η

n∑
i=1

p
(t)
i

˜̀(t)
i + η2

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2)
.

Repeatedly applying this bound and using that W (1) = n, we get

W (T+1) ≤ n
T∏
t=1

(
1− η

n∑
i=1

p
(t)
i

˜̀(t)
i + η2

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2)
.

Again, we take the logarithm to get

lnW (T+1) ≤ lnn+

T∑
t=1

ln

(
1− η

n∑
i=1

p
(t)
i

˜̀(t)
i + η2

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2)
.

We use that ln(1 + z) ≤ z for all z ∈ R (where defined) to simplify this expression to

lnW (T+1) ≤ lnn− η
T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i + η2

T∑
t=1

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2
. (2)

Combining the two bounds on lnW (T+1), that is, (1) and (2), we get

−ηmin
i

T∑
t=1

˜̀(t)
i ≤ lnn− η

T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i + η2

T∑
t=1

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2
,

which is equivalent to the claim.

4 Analysis of Exp3

Based on Lemma 18.1, the remaining analysis of Exp3 works almost the same way as the one
for the basic algorithm.

Theorem 18.2. If η ≤ γ
n , Exp3 has expected cost at most

min
i

T∑
t=1

`
(t)
i +

lnn

η
+ ηnT + γT .

Proof. Once again, we first fix I1, . . . , IT arbitrarily. This also fixes ˜̀(1), . . . , ˜̀(T ), which are fed
into the multiplicative-weights part and this way p(1), . . . , p(T ) are fixed as well. So, we can



Algorithms and Uncertainty, Summer 2020 Lecture 18 (page 4 of 5)

invoke Lemma 18.1. Replacing q
(t)
i = (1− γ)p

(t)
i + γ

n , we have

T∑
t=1

n∑
i=1

q
(t)
i

˜̀(t)
i =

T∑
t=1

n∑
i=1

(
(1− γ)p

(t)
i +

γ

n

)
˜̀(t)
i

= (1− γ)

T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i +

γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i

≤ (1− γ)

(
min
i

T∑
t=1

˜̀(t)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

p
(t)
i

(
˜̀(t)
i

)2)
+
γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i

≤ min
i

T∑
t=1

˜̀(t)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

q
(t)
i

(
˜̀(t)
i

)2
+
γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i .

Next, we consider how the values ˜̀(t)
i are derived from the `

(t)
i . To this end, keep I1, . . . , It−1

fixed. Like in the analysis of our black-box transformation, we have

E
[
˜̀(t)
i

∣∣∣ I1, . . . , It−1

]
= Pr [It = i | I1, . . . , It−1] ·

`
(t)
i

q
(t)
i

+ Pr [It 6= i] · 0 = `
(t)
i .

So, also

E

[
n∑
i=1

q
(t)
i

˜̀(t)
i

]
=

n∑
i=1

E
[
q
(t)
i

˜̀(t)
i

]
=

n∑
i=1

E
[
q
(t)
i

]
`
(t)
i = E

[
`
(t)
It

]
.

Now, we also have quadratic terms. For these, we can derive

E

[(
˜̀(t)
i

)2 ∣∣∣∣ I1, . . . , It−1

]
= Pr [It = i] ·

(
`
(t)
i

q
(t)
i

)2

+ Pr [It 6= i] · 0 =

(
`
(t)
i

)2
q
(t)
i

.

This gives us for any choice of I1, . . . , It−1

E

[
n∑
i=1

q
(t)
i

(
˜̀(t)
i

)2 ∣∣∣∣∣ I1, . . . , It−1

]
=

n∑
i=1

q
(t)
i

(
`
(t)
i

)2
q
(t)
i

=

n∑
i=1

(
`
(t)
i

)2
.

As the right-hand side is independent of I1, . . . , It−1, this identity also holds for the unconditional
expectation

E

[
n∑
i=1

q
(t)
i

(
˜̀(t)
i

)2]
=

n∑
i=1

(
`
(t)
i

)2
.

Taking the expectation over the bound from the multiplicative weights part, we get

E

[
T∑
t=1

`
(t)
It

]
≤ E

[
min
i

T∑
t=1

˜̀(t)
i

]
+

lnn

η
+ η

T∑
t=1

n∑
i=1

E

[
q
(t)
i

(
˜̀(t)
i

)2]
+
γ

n

T∑
t=1

n∑
i=1

E
[
˜̀(t)
i

]
Inserting the above identities, this implies

E

[
T∑
t=1

`
(t)
It

]
≤ min

i

T∑
t=1

`
(t)
i +

lnn

η
+ η

T∑
t=1

n∑
i=1

(
`
(t)
i

)2
+
γ

n

T∑
t=1

n∑
i=1

`
(t)
i .



Algorithms and Uncertainty, Summer 2020 Lecture 18 (page 5 of 5)

Finally, we use that `
(t)
i ≤ 1 for all i and t. This lets us bound the double sums by nT . (This

is not too wasteful because they are multiplied by η or γ
n , which are small.) Therefore

E

[
T∑
t=1

`
(t)
It

]
≤ min

i

T∑
t=1

`
(t)
i +

lnn

η
+ ηnT + γT .

Corollary 18.3. Setting η =
√

lnn
nT , γ = nη, the external regret of Exp3 is at most 3

√
nT lnn.

5 Reference

Peter Auer, Nicoló Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2003. The Nonstochas-
tic Multiarmed Bandit Problem. SIAM J. Comput. 32, 1 (January 2003), 48-77


