Algorithms and Uncertainty, Summer 2020 Lecture 16 (5 pages)
No-Regret Learning: Experts

Thomas Kesselheim Last Update: June 19, 2020

Today and also in the following lectures, we will consider online learning against an adversary.
Generally the spirit is similar to the problem that we considered last time. There are a couple
of actions available out of which we have to determine the best one. The difference is that the
rewards or costs are not determined by (unknown) probability distributions but rather by an
adversary.

As a motivating example, consider the following question of binary classification. You ob-
serve a sequence of samples from a data set and you have to classify them as “positive” or
“negative”. You make the choices one after the other, only after each choice you will get to
know the true label for this sample. You can rely on a set of n classifiers that will each tell you
their classification.

1 Majority Algorithm

Let us first consider the setting that one of the n classifiers is perfect and never makes any
mistakes. The difficulty is: You do not know which one it is.

A very simple and natural approach is the following Majority algorithm: Let S be the set
of classifiers that have never been wrong so far. Follow the advice of the majority in S (with
arbitrary tie breaking).

Observation 16.1. If there is a perfect classifier, then the Majority algorithm makes at most
logy n mistakes.

Proof idea. Every time, the algorithm makes a mistake, at least |S|/2 of the classifiers in S are
wrong. Therefore, in the following step, S will be at most half the size. As 1 < |S| < n in every
step, the claim follows. O

2 Weighted Majority Algorithm

Let us now come to the general setting, in which each classifier makes a mistake every once in
awhile. We would like to not make a lot more mistakes than the best among the n classifiers.

Of course, we cannot follow the above Majority rule because the set S will sooner or later be
empty. Instead, we maintain for each classifier a weight w;. Let wz(l) = 1. If classifier 7 is correct
in step t, then wgt“) = wl@, otherwise, if it is wrong, reduce it by setting wl(tﬂ) =(1- n)wgt),
where 0 < n < 1/2 is a parameter of the algorithm. Our decision in step ¢ is to follow the
weighted majority of classifiers.

Theorem 16.2. Weighted Majority makes at most (2 4 2n) min; m; + 21Inn/n mistakes, where
m; s the number of mistakes that classifier i makes.

Proof. Let W®) = Sy wz(t) be the sum of weights in step ¢. Note that W® never increases as
weights are only reduced. By the change of W (") we can estimate how many mistakes Weighted
Majority makes.

Consider a fixed step ¢, in which Weighted Majority makes a mistake. Let U C [n] be the

set of classifiers that are incorrect. Then, by definition), wz@ > > iqu wgt)

Sievwl) 2 35w = jw0.

, or equivalently

Algorithms and Uncertainty, Summer 2020 Lecture 16 (page 2 of 5)

For all ¢ € U, the algorithm updates the weight w! = (1-— n)w(t). For i ¢ U, we have

) %

wgt“) = wl(t). Therefore,
(t+1) _ (t+1) (t+1) _ Y ®) _ @ _ (t) _n (t)
w sz +Z w, Z(l nw, +Zwl W nZwl < (1 2) W
€U iU €U iU ieU

Let M be the number of mistakes that the algorithm makes within the first T' steps. By this
observation, we have W+ < (1- g)M wl = (1- g)M n.
Let m; be the number of mistakes that classifier ¢ makes within the first T steps. The
algorithm is defined to set wZ(TH) =(1- n)miwgl) = (1 —n)™. Also WT+D) > wl(TH).
Combining these two bounds, we get

M
(1—n)m < W+ < (1 - ﬁ) n .
Let us take the logarithm on both sides
m;In(l —n) < Mln(l - g) +Ilnn .

In order to simplify this bound, we will use the following approximation of the logarithm:

—z—22<In(1—2)< -2z, (1)
which holds for every z € [0, 3].
In(1 — z)
—z— 22

Therefore
mi(—n—n*) <M (—g) +Inn ,
or equivalently

1
M < (2+2n)m; + 220 O
n

So, we can hope to make about twice as many errors as the best classifier. Now, we will see
that we can actually do much better by using randomization. We will replace every 2 in this
formula by 1, meaning that asymptotically we only make as many errors as the best classifier.

Algorithms and Uncertainty, Summer 2020 Lecture 16 (page 3 of 5)

3 Randomized Weighted Majority and the Experts Setting

The Randomized Weighted Magority algorithm (Littlestone and Warmuth, 1994) maintains
(t) (t+1) (t)

weights w,;’ exactly as Weighted Majority, meaning that w; = w,;’ if the classifier was
correct and wEtH) =(1- n)wl@ if it was wrong. Instead of using a majority vote, we now

interpret these weights as a probability distributions and choose classifier ¢ with probability
® _), 5n (t)
P =wp) Y wy
As a matter of fact, this approach immediately works in a more general setting. Instead of
having binary classifiers, we now have arbitrary experts, who give us a piece of advice for every
round. We choose one of these experts and follow her advice. In particular, the advice could
simply be the positive or negative label. Afterwards, we get to know how good each of these
experts performed in this round.
We will consider a sequence of cost vectors (ﬁgt))ie[n“em, th) € [0,1] for all ¢ and ¢. In step
t, we choose an expert I; at random, then we get to know /¢1,...,¢, and incur costs ¢;,. The

t)

classification setting is recovered by setting EE = 0 if classifier ¢ is correct in step ¢ and El@ =1
if it is wrong.

The algorithm Multiplicative Weights or Hedge generalizes Randomized Weighted Majority
as follows. Again, n € (0, %] is a parameter of the algorithm to be chosen later.

(1)

e Initially, set w;”’ = 1, for every i € [n].

e At every time t

— Let WO =37
— Choose expert 7 with probability pgt) = wgt) JW®)

— Set wz(tﬂ) = wl(t) (11— 77)4@ for all experts i
So, note that w(tH) = wgt) if 62@ = 0 and wgtﬂ) = wgt) (1 —=mn)if EZ(-t) = 1 just as in
(Randomized) Welghted Majority.

Theorem 16.3. Multiplicative Weights, for any sequence of cost vectors from [0, 1], guarantees

that for all experts i

1
L) < @+ L + % :

where LZ(-T) Zf 16() 1s the sum of costs of expert i and L Zt Lo 1pl - is the

7 ’L
expected sum of costs of the multiplicative-weights algorithm.

Proof. Let us analyze how the sum of weights W) decreases over time. It holds
(t)
WD — Z (t+1) _ Zw g '
=1

Observe that (1 —n)* = (1 — zn), for both z = 0 and z = 1. Furthermore, z — (1 —n)* is a
convex function in z. For z € [0, 1] this implies (1 —n)* <1 — zn.

Algorithms and Uncertainty, Summer 2020 Lecture 16 (page 4 of 5)

1—nz

This gives us
W) < Zw =w — nZw E(t))

Let 653 denote the expected cost of the algorithm in step ¢. The expected cost of the algorithm
ng is given by ngg Yo Egt)wgt)/W(t). Substituting this into the bound for W+ gives

WD < w® i) Wi — O —pdl)) .

As a consequence,

~

T
w(T+1) H (1- 77€A1g nH(l — nﬁgg))

t=1 t=1

The sum of weights after step 1" can be upper bounded in terms of the expected costs of the
algorithm. On the other hand, the sum of weights after step T' can be lower bounded in terms
of the costs of the best expert as follows:

T
W+ > 3 (T+D (w ICE 13(”) (()i 16(”) — 1=k

t=1

Combining the bounds and taking the logarithm on both sides gives us

T
L (1 — 1) < (nn) + Y In(1 —pe®)
t=1

Applying Equation (1), we get

L (—n-m?) < (nn)+ Y (~ne®
= (Inn) L) .

Finally, solving for L() gives

In
i) < a+pri”+ 20 - 0

Algorithms and Uncertainty, Summer 2020 Lecture 16 (page 5 of 5)

Inn

Note that setting n = 4/ 7 yields

ng); < min LET) +2vVTInn .
K3

We call Regret(T) = Lgé — min, LD the (external) regret of the algorithm on the sequence.

(2
An algorithm that guarantees that for any sequence Regret(T) = o(T) is called a no-external-
regret algorithm.

Corollary 16.4. The multiplicative weights algorithm with n = an has external regret at

most 2/ T Inn = o(T) and hence is a no-external-regret algorithm.

4 Extensions

(t+1) _

. @ . .
Instead of setting the update to w; wgt) (1 —n)%", it is also common to update the

1 ()
weights by wgt“) = wgt) el Indeed, this is the same algorithm using only a different

parameterization, namely setting n =1 — e~"'; there is a one-to-one correspondence between n
and 7’. Sometimes, the former parameterization is easier to work with, sometimes the latter.
The result so far assumed that Kl(t) € [0,1] for all ¢ and ¢. This result can be extended to
allow Egt) € [0,p] for all ¢ and t: We divide all observed costs by p and feed them into the
multiplicative-weights algorithm. We then get
ng) < lmin L(T) +2vTInn .
p TETp o T

So, the new algorithm’s regret is at most 2pv/7T Inn.

