Algorithms and Uncertainty, Summer 2020 Lecture 15 (5 pages)
Stochastic Multi-Armed Bandits

Thomas Kesselheim Last Update: June 17, 2020

So far, we have seen examples of online algorithms, in which we know nothing about the
future; it can be arbitrary. We have also seen examples of Markov Decision processes, in which
we have precise knowledge of the underlying stochastic process and its involved probabilities.
Today, we will move to the space in between. There is an underlying stochastic process but we
do not know it. In contrast to online algorithms, we can try to “learn” the involved probability
distributions.

1 Model

Again we will have a version of a multi-armed bandit but there are no states. That is, whenever
pulling arm ¢, the reward is an independent draw from some probability distribution. The crux
is that we do not know these distributions. The only thing we can do is repeatedly pull arms,
observe the reward, and make our decision which arms to pull based on the observed rewards
up to this point.

In more detail, there are n arms with initially unknown reward probability distributions
D, ..., D, with means p1,...,u,. In step ¢, the algorithm chooses an arm I; and experiences
reward R; € [0,1] drawn from Dy,. So, the overall expected reward is E [23:1 Rt} . We assume
that T > n.

If we had perfect knowledge of Dy, ..., D,, the expected reward would be maximized by
always choosing arm i* defined by s+ = max; ;.0 The expected regret of an algorithm is the
difference between this expected reward and the one experienced by the algorithm

T
Sn
t=1

Regret =T -max py; — E
K3

2 A Simple Explore-Exploit Algorithm

A very simple algorithm works as follows. There are two phases. In the exploration phase, we
try out each arm exactly & times, so the length of this phase is kn steps. Afterwards, we have
k samples from each distribution. From this, we can compute an empirical average [i; for each
arm. If k is large enough, then fi; should be close to the actual p;. Therefore, in the exploitation
phase (of length 7" — kn), we always play the arm that maximizes fi;.

There is a clear trade-off between the exploration and the exploitation. If we set k too small,
then [i; is computed only based on a few samples and can be far from ;. If k is too large, the
exploration phase takes too long, during which we also play very bad arms.

2
Theorem 15.1. Setting k = (I) 3 the expected regret of the simple algorithm is upper-bounded

by O(n%Tg In(nT)).

To prove this theorem, we will use two standard inequalities without proofs. Hoeffding’s
inequality is a quantitative version of the law of large numbers. It states that we get close to
the expectation if we take the average of enough independent draws from a distribution.

'For simplicity we assume that this arm is unique.

Algorithms and Uncertainty, Summer 2020 Lecture 15 (page 2 of 5)

Lemma 15.2 (Hoeffding’s inequality). Let Zy, ..., ZN be independent random variables such
that a; < Z; < b; with probability 1. Let Z = % Zfil Z; be their average. Then for all v >0

.) 2N2,.YZ
Pr[|Z -E[Z]| > 7] < 2exp (‘ZfVl(b_a)z)

The union bound gives an easy upper bound on the probability of a union of events.

Lemma 15.3 (Union Bound). For any sequence of not necessarily disjoint events €1, . . ., we

have
Pr[é’lué'gu...]§Pr[51]+Pr[52]—|—... .

Proof of Theorem 15.1. By Hoeffding’s inequality, we get that for all arms ¢ and all v > 0

2]{:272

/<7(1—0)2> = 2exp(—2k+?) .

Pr([|fi; — pil =2 7] < 2exp <—

In combination with the union bound, we get

n
Pr(3i: | — il > 9] <> Pr [l — | > 7] < 2nexp(—2k%) .
=1

If |fi; — pi| <~y for all 4, this means the following. Consider the arm 4 that is played during
the exploitation phase. We have

Wi = [= 2 e = 2 pie — 2

Every reward is always non-negative. So, we can lower-bound the overall expected reward
by taking into consideration only the rewards from the exploitation phase in the case that
|fti — pi| <y for all i. Writing e for 2n exp(—2kv?), we get in combination

T
>R
t=1

E > Pr[Vi: | — | <A (T — nk)(pex —27)

> (1=) (T = nk) (ps- — 27)
>Tupx — el —nk —T2v |

where we also used that u;+ <1 and e < 1.
Therefore, the expected regret will be at most

T
Sn

t=1

Tu» —E <€l +nk+ 27T .

This bound holds for all £ and all 4. Observe that v = \/iln 2?” If we now choose

2 1
k= (%) 3 e= (%) 3 and the « that is implied by this choice, the bound holds. O

Algorithms and Uncertainty, Summer 2020 Lecture 15 (page 3 of 5)

3 UCBI1 Algorithm

One of the major weaknesses of the simple algorithm is that it does not adapt the exploration
to its observations: If an arm turns out to be very bad, intuitively it should be clear that it can
be ignored after only a few samples.

The UCBI1 algorithm is smarter. UCB stands for upper confidence bound. This almost
explains the entire algorithm. We make no further distinction between exploration and ex-
ploitation. In each step, we use the empirical averages ,&Et) of the arms observed so far. The
actual means p; are close. They are closer, the more often we pulled the respective arm. Out
of the empirical average and the number of times we pulled the arm so far, ;, we can compute
confidence bounds, in which we expect the u; values to lie. We are optimistic and choose the

arm with the highest upper bound on y;.
()

In more detail, in the first n steps, we pull each arm once. In any step t > n, we let i,

be the empirical average of arm ¢ seen in steps before t. Furthermore, we let Qgt) denote the

number of times that we pulled arm before step t.

From this, compute Indexgt) = ﬂl(t) + gl(tT) and play the arm ¢ with highest Tndex?

)

4 Distribution-Dependent Regret Bound

We will now derive a first bound on the expected regret of the UCBI policy. Note that, with a
more careful analysis, the constants could be improved.

Theorem 15.4. The expected regret of UCB1 is at most ZZ# 41AniT +4A;, where A; = i — ;.
Below, we will prove the following lemma.

Lemma 15.5. For any arm i, let Q; = QZ(.TH) denote the number of times that arm i is pulled

overall. Then E [Q;] < s; + 4, where s; = 42‘;.

This lemma is actually all the work we have to do; the rest follows in a pretty straightforward
way.

Proof of Theorem 15.4. Let X;; = 1 if the algorithm chooses to play 7 in step ¢, 0 otherwise.
Furthermore, for each i, we define a potential reward Y ;, which the algorithm would get from
pulling arm ¢ in step t (irrespective of whether the algorithm will actually pull this arm). Impor-
tantly, these two random variables are independent. Therefore E [X;;Y;;] = E[X; /] E[Y;;] =
E [X5 4] ps.

As E[R] =E[>" | X;+Yi.], by linearity of expectation, the algorithm’s expected reward
is
T

=> Y E[XifJui=) E
=1

i=1 t=1

T

ZXi,t] pi=> BQiu .
i=1

t=1

E =E

n T
DN XY

=1 t=1

T
Sn
t=1

So, as always > | Q; = T, the expected regret is

T
Sn
t=1

Using Lemma 15.5 and A;+ = 0, this immediately gives us the desired regret bound. O

n

= ZE [Qi] (i — pi) = ZE [Qi] Ai

=1

T —E

Algorithms and Uncertainty, Summer 2020 Lecture 15 (page 4 of 5)

5 Proof of Lemma 15.5

So, it only remains to prove Lemma 15.5. Interestingly, this only has to be a statement about
one single arm i. We will have to show that the larger A; the earlier the algorithm stops pulling
the arm.

We do a major part of the work by proving the following lemma. It finally quantifies the
(t)

frequently mentioned intuition that fi,’ is close to y; if arm 7 has been pulled often.

Lemma 15.6. For all ¢, we have

InT
o0

Pr |3t:]() il > <

2
T -

Proof. The difficulty is that we cannot apply Hoeffding’s inequality on a fixed ,&,gt): The value

of ﬂl@ depends on how often we have pulled arm ¢ so far and how the rewards turned out to

be. If the first rewards were low, the value of ,&Z(-t/) at the earlier time ¢’ is low as well and arm
1 gets ignored.

Therefore, instead, we will consider the following way to determine all values of /lff), First,
we draw T values for each arm 7/, which we denote by Xy 1,..., Xy p. The meaning is that the

4 draw from arm 4’ has reward Xy j. Note that fixing all these random outcomes, this also

~ (1)

determines what the algorithm does and consequently also fi;”.

Now, in order for there to be a t such that \M(t) —pil >, /g%, there has to be a k such that

\% Z?Zl Xij— il > th . On these random variables Xj 1,...,X; ;, we can apply Hoeffding’s
inequality and get

k
1 [InT InT 2

The event that there is a k for which ‘% Z§:1 Xij— il > /lnkT is again a union of events

for which we can apply the union bound. Therefore

k k
1 InT 1 [InT 2 2
Pr |3k % E Xi,j_ﬂi > & < E Pr k‘jngi’j_Mi > T STﬁ:T .

7j=1 k=1

O
By plugging in the definition of Indexgt)
(t)

an index Index;

, we immediately get that only with small probability
falls below p; or is much higher than this.

Corollary 15.7. For all i, we have

Pr |3t : Index\” < p;| < and Pr |3t :Index\” > p; +2

Mo

This corollary is the key insight to complete our proof of Lemma 15.5.

Algorithms and Uncertainty, Summer 2020 Lecture 15 (page 5 of 5)

Proof of Lemma 15.5. We can upper-bound E [Q;] as follows.
E[Ql] < Pr [Qz < Si}siﬂ-PI' [Qz > SZ]TS s; + Pr [Ql > SZ]T .

So, if we are able to show that Pr [Q; > s;] < %, we are done. Let us understand what has
to happen so that @Q; > s; occurs. If we have Q); > s;, then there has to be some ty for which
Qgto) = s; and ¢ is selected again. The algorithm selects ¢ again because Indexl(-to) is the highest
index. So in particular Indexgto) > Indexgio).

Let us now apply Corollary 15.7 to ¢ and ¢*. We get that

InT
o0

%

2 2
Pr|3t:Indexi) <pe| <= and Pr|3t:Index) > py+2 <z

By the union bound with probability at most % one of the two events happens. If neither
happens, then in particular at time tg

/InT
Efo) > and Indexgto) < Wi+ 2 r; = i + Ay = g
1

(o) This shows that Pr [Qi > si] < 7. O

,L‘*

Index

This is a contradiction to Indexgto) > Index

