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So far, we have seen examples of online algorithms, in which we know nothing about the
future; it can be arbitrary. We have also seen examples of Markov Decision processes, in which
we have precise knowledge of the underlying stochastic process and its involved probabilities.
Today, we will move to the space in between. There is an underlying stochastic process but we
do not know it. In contrast to online algorithms, we can try to “learn” the involved probability
distributions.

1 Model

Again we will have a version of a multi-armed bandit but there are no states. That is, whenever
pulling arm i, the reward is an independent draw from some probability distribution. The crux
is that we do not know these distributions. The only thing we can do is repeatedly pull arms,
observe the reward, and make our decision which arms to pull based on the observed rewards
up to this point.

In more detail, there are n arms with initially unknown reward probability distributions
D1, . . . ,Dn with means µ1, . . . , µn. In step t, the algorithm chooses an arm It and experiences

reward Rt ∈ [0, 1] drawn from DIt . So, the overall expected reward is E
[∑T

t=1Rt

]
. We assume

that T ≥ n.
If we had perfect knowledge of D1, . . . ,Dn, the expected reward would be maximized by

always choosing arm i∗ defined by µi∗ = maxi µi.
1 The expected regret of an algorithm is the

difference between this expected reward and the one experienced by the algorithm

Regret = T ·max
i
µi −E

[
T∑
t=1

Rt

]
.

2 A Simple Explore-Exploit Algorithm

A very simple algorithm works as follows. There are two phases. In the exploration phase, we
try out each arm exactly k times, so the length of this phase is kn steps. Afterwards, we have
k samples from each distribution. From this, we can compute an empirical average µ̂i for each
arm. If k is large enough, then µ̂i should be close to the actual µi. Therefore, in the exploitation
phase (of length T − kn), we always play the arm that maximizes µ̂i.

There is a clear trade-off between the exploration and the exploitation. If we set k too small,
then µ̂i is computed only based on a few samples and can be far from µi. If k is too large, the
exploration phase takes too long, during which we also play very bad arms.

Theorem 15.1. Setting k =
(
T
n

) 2
3 , the expected regret of the simple algorithm is upper-bounded

by O(n
1
3T

2
3 ln(nT )).

To prove this theorem, we will use two standard inequalities without proofs. Hoeffding’s
inequality is a quantitative version of the law of large numbers. It states that we get close to
the expectation if we take the average of enough independent draws from a distribution.

1For simplicity we assume that this arm is unique.
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Lemma 15.2 (Hoeffding’s inequality). Let Z1, . . . , ZN be independent random variables such
that ai ≤ Zi ≤ bi with probability 1. Let Z̄ = 1

N

∑N
i=1 Zi be their average. Then for all γ ≥ 0

Pr
[
|Z̄ −E

[
Z̄
]
| ≥ γ

]
≤ 2 exp

(
− 2N2γ2∑N

i=1(bi − ai)2

)
.

The union bound gives an easy upper bound on the probability of a union of events.

Lemma 15.3 (Union Bound). For any sequence of not necessarily disjoint events E1, E2 . . ., we
have

Pr [E1 ∪ E2 ∪ . . .] ≤ Pr [E1] + Pr [E2] + . . . .

Proof of Theorem 15.1. By Hoeffding’s inequality, we get that for all arms i and all γ > 0

Pr [|µ̂i − µi| ≥ γ] ≤ 2 exp

(
− 2k2γ2

k(1− 0)2

)
= 2 exp(−2kγ2) .

In combination with the union bound, we get

Pr [∃i : |µ̂i − µi| ≥ γ] ≤
n∑
i=1

Pr [|µ̂i − µi| ≥ γ] ≤ 2n exp(−2kγ2) .

If |µ̂i − µi| < γ for all i, this means the following. Consider the arm i that is played during
the exploitation phase. We have

µi ≥ µ̂i − γ ≥ µ̂i∗ − γ ≥ µi∗ − 2γ .

Every reward is always non-negative. So, we can lower-bound the overall expected reward
by taking into consideration only the rewards from the exploitation phase in the case that
|µ̂i − µi| < γ for all i. Writing ε for 2n exp(−2kγ2), we get in combination

E

[
T∑
t=1

Rt

]
≥ Pr [∀i : |µ̂i − µi| < γ] (T − nk)(µi∗ − 2γ)

≥ (1− ε) (T − nk)(µi∗ − 2γ)

≥ Tµi∗ − εT − nk − T2γ ,

where we also used that µi∗ ≤ 1 and ε ≤ 1.
Therefore, the expected regret will be at most

Tµi∗ −E

[
T∑
t=1

Rt

]
≤ εT + nk + 2γT .

This bound holds for all k and all γ. Observe that γ =
√

1
2k ln 2n

ε . If we now choose

k =
(
T
n

) 2
3 , ε =

(
n
T

) 1
3 and the γ that is implied by this choice, the bound holds.
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3 UCB1 Algorithm

One of the major weaknesses of the simple algorithm is that it does not adapt the exploration
to its observations: If an arm turns out to be very bad, intuitively it should be clear that it can
be ignored after only a few samples.

The UCB1 algorithm is smarter. UCB stands for upper confidence bound. This almost
explains the entire algorithm. We make no further distinction between exploration and ex-

ploitation. In each step, we use the empirical averages µ̂
(t)
i of the arms observed so far. The

actual means µi are close. They are closer, the more often we pulled the respective arm. Out
of the empirical average and the number of times we pulled the arm so far, Qi, we can compute
confidence bounds, in which we expect the µi values to lie. We are optimistic and choose the
arm with the highest upper bound on µi.

In more detail, in the first n steps, we pull each arm once. In any step t > n, we let µ̂
(t)
i

be the empirical average of arm i seen in steps before t. Furthermore, we let Q
(t)
i denote the

number of times that we pulled arm before step t.

From this, compute Index
(t)
i = µ̂

(t)
i +

√
lnT

Q
(t)
i

and play the arm i with highest Index
(t)
i .

4 Distribution-Dependent Regret Bound

We will now derive a first bound on the expected regret of the UCB1 policy. Note that, with a
more careful analysis, the constants could be improved.

Theorem 15.4. The expected regret of UCB1 is at most
∑

i 6=i∗
4 lnT

∆i
+4∆i, where ∆i = µi∗−µi.

Below, we will prove the following lemma.

Lemma 15.5. For any arm i, let Qi = Q
(T+1)
i denote the number of times that arm i is pulled

overall. Then E [Qi] ≤ si + 4, where si = 4 lnT
∆2

i
.

This lemma is actually all the work we have to do; the rest follows in a pretty straightforward
way.

Proof of Theorem 15.4. Let Xi,t = 1 if the algorithm chooses to play i in step t, 0 otherwise.
Furthermore, for each i, we define a potential reward Yi,t, which the algorithm would get from
pulling arm i in step t (irrespective of whether the algorithm will actually pull this arm). Impor-
tantly, these two random variables are independent. Therefore E [Xi,tYi,t] = E [Xi,t]E [Yi,t] =
E [Xi,t]µi.

As E [Rt] = E [
∑n

i=1Xi,tYi,t], by linearity of expectation, the algorithm’s expected reward
is

E

[
T∑
t=1

Rt

]
= E

[
n∑
i=1

T∑
t=1

Xi,tYi,t

]
=

n∑
i=1

T∑
t=1

E [Xi,t]µi =

n∑
i=1

E

[
T∑
t=1

Xi,t

]
µi =

n∑
i=1

E [Qi]µi .

So, as always
∑n

i=1Qi = T , the expected regret is

Tµi∗ −E

[
T∑
t=1

Rt

]
=

n∑
i=1

E [Qi] (µi∗ − µi) =

n∑
i=1

E [Qi] ∆i .

Using Lemma 15.5 and ∆i∗ = 0, this immediately gives us the desired regret bound.
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5 Proof of Lemma 15.5

So, it only remains to prove Lemma 15.5. Interestingly, this only has to be a statement about
one single arm i. We will have to show that the larger ∆i the earlier the algorithm stops pulling
the arm.

We do a major part of the work by proving the following lemma. It finally quantifies the

frequently mentioned intuition that µ̂
(t)
i is close to µi if arm i has been pulled often.

Lemma 15.6. For all i, we have

Pr

[
∃t : |µ̂(t)

i − µi| ≥
√

lnT

Q
(t)
i

]
≤ 2

T
.

Proof. The difficulty is that we cannot apply Hoeffding’s inequality on a fixed µ̂
(t)
i : The value

of µ̂
(t)
i depends on how often we have pulled arm i so far and how the rewards turned out to

be. If the first rewards were low, the value of µ̂
(t′)
i at the earlier time t′ is low as well and arm

i gets ignored.

Therefore, instead, we will consider the following way to determine all values of µ̂
(t)
i′ . First,

we draw T values for each arm i′, which we denote by Xi′,1, . . . , Xi′,T . The meaning is that the
jth draw from arm i′ has reward Xi′,j . Note that fixing all these random outcomes, this also

determines what the algorithm does and consequently also µ̂
(t)
i′ .

Now, in order for there to be a t such that |µ̂(t)
i −µi| ≥

√
lnT

Q
(t)
i

, there has to be a k such that

| 1k
∑k

j=1Xi,j −µi| ≥
√

lnT
k . On these random variables Xi,1, . . . , Xi,k, we can apply Hoeffding’s

inequality and get

Pr

∣∣∣∣∣∣1k
k∑
j=1

Xi,j − µi

∣∣∣∣∣∣ ≥
√

lnT

k

 ≤ 2 exp

(
−2k

lnT

k

)
=

2

T 2
.

The event that there is a k for which
∣∣∣ 1k∑k

j=1Xi,j − µi
∣∣∣ ≥√ lnT

k is again a union of events

for which we can apply the union bound. Therefore

Pr

∃k :

∣∣∣∣∣∣1k
k∑
j=1

Xi,j − µi

∣∣∣∣∣∣ ≥
√

lnT

k

 ≤ T∑
k=1

Pr

∣∣∣∣∣∣1k
k∑
j=1

Xi,j − µi

∣∣∣∣∣∣ ≥
√

lnT

k

 ≤ T 2

T 2
=

2

T
.

By plugging in the definition of Index
(t)
i , we immediately get that only with small probability

an index Index
(t)
i falls below µi or is much higher than this.

Corollary 15.7. For all i, we have

Pr
[
∃t : Index

(t)
i ≤ µi

]
≤ 2

T
and Pr

[
∃t : Index

(t)
i ≥ µi + 2

√
lnT

Q
(t)
i

]
≤ 2

T
.

This corollary is the key insight to complete our proof of Lemma 15.5.
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Proof of Lemma 15.5. We can upper-bound E [Qi] as follows.

E [Qi] ≤ Pr [Qi ≤ si] si + Pr [Qi > si]T ≤ si + Pr [Qi > si]T .

So, if we are able to show that Pr [Qi > si] ≤ 4
T , we are done. Let us understand what has

to happen so that Qi > si occurs. If we have Qi > si, then there has to be some t0 for which

Q
(t0)
i = si and i is selected again. The algorithm selects i again because Index

(t0)
i is the highest

index. So in particular Index
(t0)
i ≥ Index

(t0)
i∗ .

Let us now apply Corollary 15.7 to i and i∗. We get that

Pr
[
∃t : Index

(t)
i∗ ≤ µi∗

]
≤ 2

T
and Pr

[
∃t : Index

(t)
i ≥ µi + 2

√
lnT

Q
(t)
i

]
≤ 2

T
.

By the union bound with probability at most 4
T one of the two events happens. If neither

happens, then in particular at time t0

Index
(t0)
i∗ > µi∗ and Index

(t0)
i < µi + 2

√
lnT

si
= µi + ∆i = µi∗ .

This is a contradiction to Index
(t0)
i ≥ Index

(t0)
i∗ . This shows that Pr [Qi > si] ≤ 4

T .


