Algorithms and Uncertainty, Summer 2020 Lecture 12 (4 pages)

Stochastic Steiner Tree

Thomas Kesselheim Last Update: June 8, 2020

Today, we will consider another example of stochastic two-stage optimization. Last time, we
considered LP-based approaches. One of the drawbacks of these approaches is that one always
has to solve a linear program whose size depends on the number of scenarios. Today, we will
consider a different kind of algorithm that is more combinatorial. The number of scenarios does
not matter at all. Indeed, we only need to be able to draw samples from the same distribution
that the scenario is generated from.

1 Recap: Steiner Tree

We consider a stochastic variant of the rooted Steiner tree problem. Recall that in the deter-
ministic offline problem we are given a graph G = (V| E), edge weights w, > 0 for e € E, a root
r € V, and a set of terminals T' C V. Our task is to select a subset of the edges S C E such that
{r}UT is connected in G’ = (V. S) and)" g w, is minimized. Observe that if ' = V' then this
problem is exactly the minimum spanning tree problem. It is an NP-hard problem. Without
loss of generality, G = (V, F) is a complete graph. We can also assume that the weights w, fulfill
the triangle inequality. That is, wy .} < Wiy z) +Wie ey for all u,v,2 € V. This is without loss
of generality because we could instead take the detour via x instead of the edge {u,v}.

Also recall that Steiner trees can be approximated by minimum spanning trees. Such a
spanning tree only uses edges between the nodes in the set {r} U7 and no edges to other
vertices (called Steiner vertices). Let MST(7T) C E be the minimum spanning tree on G|gyur
and let Steiner(7") C E be the optimal Steiner tree connecting {r} UT. We already proved the
following lemma when we talked about Online Steiner Tree.

Lemma 12.1. A minimum spanning tree on G|gyur is a 2-approzimation for the min-cost
Steiner tree on {r} UT, formally

w(MST(T')) < 2 - w(Steiner(1))

2 Two-Stage Problem

In the stochastic variant, we do not know the set T" in advance but only the distribution it is
drawn from. In the first stage, we do not yet know the set T" but we can already pick edges e
at costs we. In the second stage, we know the set T' but edges are more expensive now: Picking
edge e costs A - w, for A > 1.

As a matter of fact, we do not need to fully know the probability distribution that 7 is
drawn from. It will only be necessary to be able to draw samples from the same distribution.
Our goal is to minimize the expected cost. We assume that cost of edges increase by a uniform
inflation factor A > 1 from the first stage to the second. Therefore the expected cost of a policy

is
Z we + E Z A - We

e selected in first stage e selected in second stage

Let us understand the limiting cases first: In the case A = 1 it does not make sense to
select anything in the first stage because it does not get more expensive in the second one. For

Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 2 of 4)

A — 00, the second stage gets extremely expensive, so we buy edges connecting every possible
T in the first stage.

Again, even the basic Steiner tree problem is NP hard. Therefore, we cannot compute the
optimal policy in polynomial time and we want to approximate it instead. More formally, let
Ej be the set of edges selected by the optimal policy in the first stage, and let £} be the set
of edges selected by the optimal policy in the second stage if the set of terminals is 7. We are
looking for a policy whose expected cost is as close as possible to

Z* = Zwe—l—E Z A - w,

e€E} ecE;

3 Algorithm “Boosted Sampling”

For simplicity, we will assume that A is an integer. We will consider the following algorithm
called “Boosted Sampling”:

e In the first stage, draw A times from the known distribution, call these sets Si,...,S).
Compute a minimum spanning tree on {r} U S; U...U Sy, let Ey be the set of edges
contained in it and pick them.

e In the second stage, set w. = 0 for all e € Ey and compute a minimum spanning tree on
{r}UT, let Ep be the set of contained edges not picked so far and pick them.

This algorithm only needs to sample A times and calculate two minimum spanning trees. It
therefore runs in polynomial time if A is polynomially bounded.

Theorem 12.2. The expected cost of the algorithm is at most 4Z*. That is,
E|) wet > Aw| <4Z”
eckEy ecbEr

In the proof, we will bound the expected cost from each stage by 2Z*. By linearity of
expectation, this then implies

E Zwe+2)\-we =E Zwe +E Z)\-we < 47*.

ecFy ecEp ecFEy ecEp

4 Analysis of First Stage
Lemma 12.3. The expected first-stage cost of the algorithm is at most 2Z2*. That is,
E Z we| <22
ecFEy

Proof. EgUEg U...UEg is the union of all edges chosen by the optimal policy for scenarios
S1,...,5x. Observe that EfUEY U.. .UE?;A is a feasible Steiner tree connecting all of S1U...US)
to the root r.

Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 3 of 4)

Our choice, Fyg = MST(S; U...US)) can have at most twice the cost, so

A
w(Ey) < 2w(Ej UES, U...UES) < 2w(Ef) +2) w(Es,) .
=1

By linearity of expectation, we have

A
E [w(Ey)] < 2w(Ej) +2) E [w(E3,)]
=1

Furthermore, observe that E [w(Egl)] = E [w(E}.)] for all ¢ because S; and T' are drawn from
the same distribution. So

E [w(Eo)] < 2w(E]) + 2AE [w(E})] = 22* . O

5 Analysis of Second Stage

Lemma 12.4. The expected second-stage cost of the algorithm is at most 2Z*. That is,

E ZA.we < 27
ecEr

To bound the cost incurred in the second stage, we have to understand how expensive it is
to “augment” a spanning tree. Given A, B C V let (A, B) be the cost of a minimum spanning
tree on the graph G|y,yuaup When setting wy, .y = 0 for all u,v € {r} U A. That is, the vertices
in {r} U A can be connected for free but we also have to connect all of B to them.

Lemma 12.5. For any Uy, ..., Ur CV, we have
k

d o Junti | <wMST(UhU...Ulk)) .
i=1 i

Figure 1: Illustration of Lemma 12.5 with two sets U; and Us. Using only the red edges, each
red vertex is connected to the root or a blue vertex, which we can connect for free, or is blue
itself. The same holds if we swap red and blue.

Proof. Consider MST(U; U...UUy). Recall that this is a tree rooted at r. For v € UyU...UUy,
v # r, let a, be the weight of the edge connecting v to its parent node in this tree.
Now, we can bound

slJuui| < >

Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 4 of 4)

because by connecting each v € U; \ U#i U; to its parent node and using the zero-weight edges
all of Uy U ... U Uy is connected (also see Figure 1).
Therefore, we now have

k

k
YolUuui | <> Y aw< Y ay=wMST(U1U...Uy)) . O

i=1 j;ﬁl =1 UEUZ‘\U]-#Z- Uj UGUi U;
Based on this lemma, we can now complete the analysis of the second stage.

Proof of Lemma 12.4. In the second stage, we connect the set T by augmenting a minimum
spanning tree on {r} U Sy U...U Sy to one that also includes the set T". Therefore

D X we=A-6(SU...UST) .
ecEr

We now perform a thought experiment: Note that Si,...,S5) and T are A + 1 independent
draws from the same distribution. So, equivalently, we might also draw Uy, ..., Ux4; from this
distribution and then draw K uniformly at random from {1,..., A + 1} and set T' = Uk and
assign the other U; sets arbitrarily to S1,...,S).

Therefore, we can write

A+1
1
E[6(S1U...US,,T)]=E |§ ‘U U, Ug || =E m25 U'Uj,UZ-
J#FK i=1 J#i
By Lemma 12.5, we have

A+1

> o | UUUi | <wMST(UU...UUx)) -

i=1 j#i

So, combining these arguments, the second-stage cost of our algorithm can be bounded by

A
echup

Again, Eg U Ef; U...U E(*]Hl is a feasible Steiner tree connecting U; U ... U Uyy1 to the
root, so the minimum spanning tree can have at most twice the cost, formally

wMST(U1U...UUx1)) <2w(EgU Ep, U...UE)

A+1

<2w(E5) +2) w(Ef,) .
=1

Again use linearity of expectation and E [w(Ef;)] = E [w(E})] to get

E [wMST(U;U...UUxt1))] <2w(Ej) +2(A+ DE [w(ET)] < 2% (w(Ey) + AE [w(ET)]) -

O

Reference

Boosted sampling: approximation algorithms for stochastic optimization, A. Gupta, M. Pal, R.
Ravi, A. Sinha, STOC 2004

