
Algorithms and Uncertainty, Summer 2020 Lecture 12 (4 pages)

Stochastic Steiner Tree

Thomas Kesselheim Last Update: June 8, 2020

Today, we will consider another example of stochastic two-stage optimization. Last time, we
considered LP-based approaches. One of the drawbacks of these approaches is that one always
has to solve a linear program whose size depends on the number of scenarios. Today, we will
consider a different kind of algorithm that is more combinatorial. The number of scenarios does
not matter at all. Indeed, we only need to be able to draw samples from the same distribution
that the scenario is generated from.

1 Recap: Steiner Tree

We consider a stochastic variant of the rooted Steiner tree problem. Recall that in the deter-
ministic offline problem we are given a graph G = (V,E), edge weights we ≥ 0 for e ∈ E, a root
r ∈ V , and a set of terminals T ⊆ V . Our task is to select a subset of the edges S ⊆ E such that
{r}∪T is connected in G′ = (V, S) and

∑
e∈S we is minimized. Observe that if T = V then this

problem is exactly the minimum spanning tree problem. It is an NP-hard problem. Without
loss of generality, G = (V,E) is a complete graph. We can also assume that the weights we fulfill
the triangle inequality. That is, w{u,v} ≤ w{u,x}+w{x,v} for all u, v, x ∈ V . This is without loss
of generality because we could instead take the detour via x instead of the edge {u, v}.

Also recall that Steiner trees can be approximated by minimum spanning trees. Such a
spanning tree only uses edges between the nodes in the set {r} ∪ T and no edges to other
vertices (called Steiner vertices). Let MST(T ) ⊆ E be the minimum spanning tree on G|{r}∪T
and let Steiner(T ) ⊆ E be the optimal Steiner tree connecting {r} ∪ T . We already proved the
following lemma when we talked about Online Steiner Tree.

Lemma 12.1. A minimum spanning tree on G|{r}∪T is a 2-approximation for the min-cost
Steiner tree on {r} ∪ T , formally

w(MST(T )) ≤ 2 · w(Steiner(T ))

2 Two-Stage Problem

In the stochastic variant, we do not know the set T in advance but only the distribution it is
drawn from. In the first stage, we do not yet know the set T but we can already pick edges e
at costs we. In the second stage, we know the set T but edges are more expensive now: Picking
edge e costs λ · we for λ ≥ 1.

As a matter of fact, we do not need to fully know the probability distribution that T is
drawn from. It will only be necessary to be able to draw samples from the same distribution.
Our goal is to minimize the expected cost. We assume that cost of edges increase by a uniform
inflation factor λ ≥ 1 from the first stage to the second. Therefore the expected cost of a policy
is ∑

e selected in first stage

we + E

 ∑
e selected in second stage

λ · we

 .

Let us understand the limiting cases first: In the case λ = 1 it does not make sense to
select anything in the first stage because it does not get more expensive in the second one. For



Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 2 of 4)

λ → ∞, the second stage gets extremely expensive, so we buy edges connecting every possible
T in the first stage.

Again, even the basic Steiner tree problem is NP hard. Therefore, we cannot compute the
optimal policy in polynomial time and we want to approximate it instead. More formally, let
E∗0 be the set of edges selected by the optimal policy in the first stage, and let E∗T be the set
of edges selected by the optimal policy in the second stage if the set of terminals is T . We are
looking for a policy whose expected cost is as close as possible to

Z∗ :=
∑
e∈E∗0

we + E

∑
e∈E∗T

λ · we

 .

3 Algorithm “Boosted Sampling”

For simplicity, we will assume that λ is an integer. We will consider the following algorithm
called “Boosted Sampling”:

• In the first stage, draw λ times from the known distribution, call these sets S1, . . . , Sλ.
Compute a minimum spanning tree on {r} ∪ S1 ∪ . . . ∪ Sλ, let E0 be the set of edges
contained in it and pick them.

• In the second stage, set we = 0 for all e ∈ E0 and compute a minimum spanning tree on
{r} ∪ T , let ET be the set of contained edges not picked so far and pick them.

This algorithm only needs to sample λ times and calculate two minimum spanning trees. It
therefore runs in polynomial time if λ is polynomially bounded.

Theorem 12.2. The expected cost of the algorithm is at most 4Z∗. That is,

E

∑
e∈E0

we +
∑
e∈ET

λ · we

 ≤ 4Z∗.

In the proof, we will bound the expected cost from each stage by 2Z∗. By linearity of
expectation, this then implies

E

∑
e∈E0

we +
∑
e∈ET

λ · we

 = E

∑
e∈E0

we

+ E

∑
e∈ET

λ · we

 ≤ 4Z∗.

4 Analysis of First Stage

Lemma 12.3. The expected first-stage cost of the algorithm is at most 2Z∗. That is,

E

∑
e∈E0

we

 ≤ 2Z∗.

Proof. E∗0 ∪E∗S1
∪ . . . ∪E∗Sλ is the union of all edges chosen by the optimal policy for scenarios

S1, . . . , Sλ. Observe that E∗0∪E∗S1
∪. . .∪E∗Sλ is a feasible Steiner tree connecting all of S1∪. . .∪Sλ

to the root r.



Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 3 of 4)

Our choice, E0 = MST(S1 ∪ . . . ∪ Sλ) can have at most twice the cost, so

w(E0) ≤ 2w(E∗0 ∪ E∗S1
∪ . . . ∪ E∗Sλ) ≤ 2w(E∗0) + 2

λ∑
i=1

w(E∗Si) .

By linearity of expectation, we have

E [w(E0)] ≤ 2w(E∗0) + 2
λ∑
i=1

E
[
w(E∗Si)

]
.

Furthermore, observe that E
[
w(E∗Si)

]
= E [w(E∗T )] for all i because Si and T are drawn from

the same distribution. So

E [w(E0)] ≤ 2w(E∗0) + 2λE [w(E∗T )] = 2Z∗ .

5 Analysis of Second Stage

Lemma 12.4. The expected second-stage cost of the algorithm is at most 2Z∗. That is,

E

∑
e∈ET

λ · we

 ≤ 2Z∗.

To bound the cost incurred in the second stage, we have to understand how expensive it is
to “augment” a spanning tree. Given A,B ⊆ V let δ(A,B) be the cost of a minimum spanning
tree on the graph G|{r}∪A∪B when setting w{u,v} = 0 for all u, v ∈ {r}∪A. That is, the vertices
in {r} ∪A can be connected for free but we also have to connect all of B to them.

Lemma 12.5. For any U1, . . . , Uk ⊆ V , we have

k∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ w(MST(U1 ∪ . . . ∪ Uk)) .

Figure 1: Illustration of Lemma 12.5 with two sets U1 and U2. Using only the red edges, each
red vertex is connected to the root or a blue vertex, which we can connect for free, or is blue
itself. The same holds if we swap red and blue.

Proof. Consider MST(U1∪ . . .∪Uk). Recall that this is a tree rooted at r. For v ∈ U1∪ . . .∪Uk,
v 6= r, let av be the weight of the edge connecting v to its parent node in this tree.

Now, we can bound

δ

⋃
j 6=i

Uj , Ui

 ≤ ∑
v∈Ui\

⋃
j 6=i Uj

av



Algorithms and Uncertainty, Summer 2020 Lecture 12 (page 4 of 4)

because by connecting each v ∈ Ui \
⋃
j 6=i Uj to its parent node and using the zero-weight edges

all of U1 ∪ . . . ∪ Uk is connected (also see Figure 1).
Therefore, we now have

k∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ k∑
i=1

∑
v∈Ui\

⋃
j 6=i Uj

av ≤
∑

v∈
⋃
i Ui

av = w(MST(U1 ∪ . . . ∪ Uk)) .

Based on this lemma, we can now complete the analysis of the second stage.

Proof of Lemma 12.4. In the second stage, we connect the set T by augmenting a minimum
spanning tree on {r} ∪ S1 ∪ . . . ∪ Sλ to one that also includes the set T . Therefore∑

e∈ET

λ · we = λ · δ(S1 ∪ . . . ∪ Sλ, T ) .

We now perform a thought experiment: Note that S1, . . . , Sλ and T are λ+ 1 independent
draws from the same distribution. So, equivalently, we might also draw U1, . . . , Uλ+1 from this
distribution and then draw K uniformly at random from {1, . . . , λ + 1} and set T = UK and
assign the other Ui sets arbitrarily to S1, . . . , Sλ.

Therefore, we can write

E [δ(S1 ∪ . . . ∪ Sλ, T )] = E

δ
⋃
j 6=K

Uj , UK

 = E

 1

λ+ 1

λ+1∑
i=1

δ

⋃
j 6=i

Uj , Ui

 .

By Lemma 12.5, we have

λ+1∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ w(MST(U1 ∪ . . . ∪ Uλ+1)) .

So, combining these arguments, the second-stage cost of our algorithm can be bounded by

E

∑
e∈ET

λ · we

 ≤ λ

λ+ 1
E [w(MST(U1 ∪ . . . ∪ Uλ+1))] .

Again, E∗0 ∪ E∗U1
∪ . . . ∪ E∗Uλ+1

is a feasible Steiner tree connecting U1 ∪ . . . ∪ Uλ+1 to the
root, so the minimum spanning tree can have at most twice the cost, formally

w(MST(U1 ∪ . . . ∪ Uλ+1)) ≤ 2w(E∗0 ∪ E∗U1
∪ . . . ∪ E∗Uλ+1

)

≤ 2w(E∗0) + 2
λ+1∑
i=1

w(E∗Ui) .

Again use linearity of expectation and E
[
w(E∗Ui)

]
= E [w(E∗T )] to get

E [w(MST(U1 ∪ . . . ∪ Uλ+1))] ≤ 2w(E∗0) + 2(λ+ 1)E [w(E∗T )] ≤ 2
λ+ 1

λ
(w(E∗0) + λE [w(E∗T )]) .

Reference

Boosted sampling: approximation algorithms for stochastic optimization, A. Gupta, M. Pál, R.
Ravi, A. Sinha, STOC 2004


