
Algorithms and Uncertainty, Summer 2020 Lecture 11 (4 pages)

Stochastic Set Cover

Thomas Kesselheim Last Update: May 20, 2020

In the analysis of online algorithms, we assumed that we have to make commitments right
away. In practice often restrictions are not as strict. Just suppose you have to fly to New York
City two months from now. You could either buy the ticket now for a cheap price or later on.
Now the ticket is cheap but there is a chance that you actually cannot go on the trip. So, it
might also make sense to wait and buy the ticket for a higher price when it is certain that you
have to go.

This is a typical example of a multi-stage optimization problem. These are problems in
which the optimization instance gets more and more concrete over time and decisions can be
made on the way. There are both models with stochastic as well as adversarial inputs. Today,
we will consider simple examples of such stochastic problems.

1 Stochastic Set Cover

Recall that in the offline Set Cover problem, there is a universe of m elements U and a family
of subsets S ⊆ 2U . Each set S ∈ S has a cost cS . We have to select a cover C ⊆ S such that
for all e ∈ U there is some S ∈ C with e ∈ S. We want to minimize the cost

∑
S∈C cS . We have

already seen the LP relaxation before:

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

In the stochastic version, only a subset A ⊆ U has to be covered. That is, only for e ∈ A,
there has to be S ∈ C with e ∈ S. It is uncertain which set A is. The set A is drawn from
a known probability distribution. We let pA, A ⊆ U , denote the probability that A has to be
covered.

Eventually, we will have to cover all of A. We have two opportunities to select sets: Before
A is revealed and afterwards. Before A is revealed (stage I), adding S ∈ S costs cI

S ; after A is
revealed (stage II), it costs cII

S ≥ cI
S .

Important special cases are as follows. We might have cI
S = cII

S for all S. In this case,
choosing sets in the first stage does not make any sense and we might as well wait until the
second stage. If cII

S =∞, then we want to cover all elements that can possibly show up already
in the first stage.

We know the distribution (pA)A⊆U and well as both cost vectors (cI
S)S∈S and (cII

S)S∈S in
advance. The goal is to minimize the expected cost

∑
S selected in first stage

cI
S + E

 ∑
S selected in second stage

cII
S

 .

Algorithms and Uncertainty, Summer 2020 Lecture 11 (page 2 of 4)

2 Our Goal

Observe that the stochastic set-cover problem can be modeled as a Markov decision process with
time horizon T = 2. So, we could in principle use the algorithm based on dynamic programming
to compute an optimal policy. However, the number of states will be huge. Computing it is
at least as hard as solving the Set Cover problem optimally because one special case is that
pA = 1 for one set A. Set Cover is an NP-hard problem, so we cannot hope to find an exact
algorithm that runs in polynomial time. Therefore, we will be interested in approximating the
optimal policy in polynomial time.

Given any instance I of the problem, that is the probability distribution over sets of elements
and the different cost vectors, let CI(π) denote the expected cost of policy π. There is an optimal
policy π∗I such that CI(π

∗
I) ≤ CI(π) for any policy π. Our goal is to design a polynomial time

algorithm with the following property. Given an instance I, it is supposed to compute a policy
π such that CI(π) ≤ α · CI(π∗I), where α > 1 is as small as possible.

Note that π∗I is not the offline optimum. Indeed, there is not a lot we can do if we are
compared to the offline optimum. Suppose we have only a single element e, which has to be
covered with probability ε. Covering it in the first phase costs ε; in the second phase it costs 1.
Any policy has expected cost ε but the offline optimum has expected cost ε2.

3 An LP Relaxation

We formulate an LP relaxation as follows. Given an arbitrary policy, let xS = 1 if set S is
selected in the first stage, 0 otherwise. Let yA,S = 1 if set S is selected in the second stage if
set A has to be covered, 0 otherwise. Based on these variables, we can write the LP

minimize
∑
S∈S

cI
SxS +

∑
A⊆U

pA
∑
S∈S

cII
S yA,S

subject to
∑

S : e∈S
xS +

∑
S : e∈S

yA,S ≥ 1 for all A ⊆ U , e ∈ A

xS , yA,S ≥ 0 for all S ∈ S, A ⊆ U

It is easy to observe that every policy corresponds to an LP solution whose value is the expected
cost of this policy. So, the optimal LP solution can only be cheaper than the optimal policy. If
pA > 0 only for a small number of sets, we can solve this linear program in polynomial time.

4 Offline Set Cover and the Greedy Algorithm

Every solution to the Set Cover problem also corresponds to a feasible solution to the LP
relaxation. However, the best fractional solution can be cheaper but not arbitrarily so. We
have seen before how to round LP solutions to feasible Set Cover solutions. But there is an
even easier approach: Run a simple greedy algorithm. We will show that the cost of its solution
are also bounded in terms of the cheapest LP solution.

The greedy algorithm for offline Set Cover is truly simple. It works as follows

• Initially, set U ′ := U

• While U ′ 6= ∅

– Let S be the set that minimizes cS
|S∩U ′|

Algorithms and Uncertainty, Summer 2020 Lecture 11 (page 3 of 4)

– Add S to C, set U ′ := U ′ \ S.

So, in every step, the algorithm chooses the set S of minimum cost per newly covered element.

Theorem 11.1. Let C be the cover computed by the greedy algorithm, let x∗ be the optimal
solution to the LP relaxation. Then

∑
S∈C cS ≤ O(logm)

∑
S∈S cSx

∗
S, where m = |U |.

Proof. Every element gets removed from U ′ at some point. Let ek be the kth element that is
removed from the set U ′, breaking ties arbitrarily. Element ek gets removed from U ′ because it
is covered by some S for the first time; later more sets covering ek can follow, which we ignore.
Let Sk denote this set S which covers ek for the first time and let U ′k denote the state of U ′ at
the beginning of the iteration in which ek is removed.

We define
pk =

cSk

|Sk ∩ U ′k|
as the cost per newly-covered element that we incur when covering element ek. Note that while
covering ek we may cover elements for the first time as well and we split up the cost of set cSk

evenly among them. By this definition, we can write the cost that our algorithm incurs as∑
S∈C

cS =
m∑
k=1

pk .

We claim that

pk ≤
∑

S∈S cSx
∗
S

m− k + 1
. (1)

This then implies∑
S∈C

cS =

m∑
k=1

pk ≤
m∑
k=1

∑
S∈S cSx

∗
S

m− k + 1
=
∑
S∈S

cSx
∗
S

m∑
k=1

1

k
= O(logm)

∑
S∈S

cSx
∗
S ,

which is exactly what we claimed.
So, it only remains to show (1). Recall that Sk minimizes cS

|S∩U ′
k|

. That is, we can write

pk = min
S

cS
|S ∩ U ′k|

= min
e∈U ′

k

min
S:e∈S

cS
|S ∩ U ′k|

.

The last step looks a bit redundant but now we have two minimum operators that we can talk
about. Note that any minimum is always upper-bounded by any (weighted) average. That is,
we have

min
e∈U ′

k

min
S:e∈S

cS
|S ∩ U ′k|

≤ 1

|U ′k|
∑
e∈U ′

k

min
S:e∈S

cS
|S ∩ U ′k|

.

Furthermore, because x∗ is a feasible LP solution
∑

S:e∈S x
∗
S ≥ 1 for all e. So,

min
S:e∈S

cS
|S ∩ U ′k|

≤
∑
S:e∈S

x∗S
cS

|S ∩ U ′k|
.

In combination, we have

pk ≤
1

|U ′k|
∑
e∈U ′

k

∑
S:e∈S

x∗S
cS

|S ∩ U ′k|
=

1

|U ′k|
∑

S:S∩U ′
k 6=∅

cSx
∗
S ≤

1

|U ′k|
∑
S∈S

cSx
∗
S ,

where the second-to-last step is only a re-ordering of the sum.
Equation (1) now follows because |U ′k| = m−k+1 because before the kth element is removed,

there are at least m−k+ 1 left. There might be even more because other elements get removed
in the same iteration.

Algorithms and Uncertainty, Summer 2020 Lecture 11 (page 4 of 4)

5 Algorithm for Stochastic Set Cover

Now, we can proceed to the multi-stage variant. As said before, our algorithm first solves the
LP relaxation and obtains an optimal solution (x∗, y∗). We turn it into a policy as follows.

• Let U0 be the set of all elements e such that
∑

S : e∈S x
∗
S ≥

1
2 . Make sure to cover these

elements in the first stage, e.g., by running the greedy algorithm on U0 with costs (cI
S)S∈S .

• Cover A \ U0 in the second stage, e.g., by running the greedy algorithm on A \ U0 with
costs (cII

S)S∈S .

The policy is clearly feasible because whatever A is drawn, each e ∈ A is covered in the second
stage at the latest.

Theorem 11.2. The algorithm turns any fractional solution to the LP into a feasible policy of
at most O(logm)-times the optimal cost in polynomial time.

Proof. Let us understand the cost of the first stage of our policy. We defined it to cover U0.
The (deterministic) LP relaxation of this problem is the following.

minimize
∑
S∈S

cI
SxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U0

xS ≥ 0 for all S ∈ S

Observe that 2x∗ is a feasible solution by the way we defined U0. So the optimal value is at
most 2

∑
S∈S c

I
Sx
∗
S . This means that, by Theorem 11.1, our first-stage selection has a cost of at

most
O(logm) · 2

∑
S∈S

cI
Sx
∗
S .

In the second stage, we only have to cover A \ U0. Observe that for all e ∈ A \ U0∑
S : e∈S

y∗A,S ≥
1

2

because (x∗, y∗) is a feasible LP solution. So, we can follow just the same idea as above and get
a cover of cost at most

O(logm) · 2
∑
S∈S

cII
S y
∗
A,S .

In combination, our cover will cost in expectation

O(logm) ·

(∑
S∈S

cI
Sx
∗
S +

∑
A

pA
∑
S∈S

cII
S y
∗
A,S

)
.

References

• Stochastic optimization is (almost) as easy as deterministic optimization, D. Shmoys, C.
Swamy, FOCS 2004 (Set Cover and generalizations)

