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In the analysis of online algorithms, we assumed that we have to make commitments right
away. In practice often restrictions are not as strict. Just suppose you have to fly to New York
City two months from now. You could either buy the ticket now for a cheap price or later on.
Now the ticket is cheap but there is a chance that you actually cannot go on the trip. So, it
might also make sense to wait and buy the ticket for a higher price when it is certain that you
have to go.

This is a typical example of a multi-stage optimization problem. These are problems in
which the optimization instance gets more and more concrete over time and decisions can be
made on the way. There are both models with stochastic as well as adversarial inputs. Today,
we will consider simple examples of such stochastic problems.

1 Stochastic Set Cover

Recall that in the offline Set Cover problem, there is a universe of m elements U and a family
of subsets S C 2V. Each set S € S has a cost cg. We have to select a cover C C S such that
for all e € U there is some S € C with e € S. We want to minimize the cost ) ¢.- cs. We have
already seen the LP relaxation before:

minimize E cSxS

SeSs

subject to Z rg > 1 forallec U
S:ecS
x5 >0 forall Se S

In the stochastic version, only a subset A C U has to be covered. That is, only for e € A,
there has to be S € C with e € §. It is uncertain which set A is. The set A is drawn from
a known probability distribution. We let p4, A C U, denote the probability that A has to be
covered.

Eventually, we will have to cover all of A. We have two opportunities to select sets: Before
A is revealed and afterwards. Before A is revealed (stage I), adding S € S costs ck; after A is
revealed (stage II), it costs ¢ > ck.

Important special cases are as follows. We might have cg = cg for all S. In this case,
choosing sets in the first stage does not make any sense and we might as well wait until the
second stage. If cISI = 00, then we want to cover all elements that can possibly show up already
in the first stage.

We know the distribution (pa)acy and well as both cost vectors (Cg)ggg and (cg)geg in
advance. The goal is to minimize the expected cost

Z s +E Z o

S selected in first stage S selected in second stage
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2 Our Goal

Observe that the stochastic set-cover problem can be modeled as a Markov decision process with
time horizon T' = 2. So, we could in principle use the algorithm based on dynamic programming
to compute an optimal policy. However, the number of states will be huge. Computing it is
at least as hard as solving the Set Cover problem optimally because one special case is that
pa = 1 for one set A. Set Cover is an NP-hard problem, so we cannot hope to find an exact
algorithm that runs in polynomial time. Therefore, we will be interested in approzimating the
optimal policy in polynomial time.

Given any instance Z of the problem, that is the probability distribution over sets of elements
and the different cost vectors, let Cz(7) denote the expected cost of policy 7. There is an optimal
policy 75 such that Cz(7n3) < Cz(w) for any policy m. Our goal is to design a polynomial time
algorithm with the following property. Given an instance Z, it is supposed to compute a policy
7 such that Cz(m) < a- Cz(n}), where o > 1 is as small as possible.

Note that 77 is not the offline optimum. Indeed, there is not a lot we can do if we are
compared to the offline optimum. Suppose we have only a single element e, which has to be
covered with probability e. Covering it in the first phase costs €; in the second phase it costs 1.
Any policy has expected cost € but the offline optimum has expected cost €2.

3 An LP Relaxation

We formulate an LP relaxation as follows. Given an arbitrary policy, let xg = 1 if set S is
selected in the first stage, 0 otherwise. Let y4 g = 1 if set S is selected in the second stage if
set A has to be covered, 0 otherwise. Based on these variables, we can write the LP

minimize Z CISmS + Z pA Z CISIZ/A,S

SeSs ACU Ses

subject to Z rg + Z ya,s > 1 foral ACU,ec A
S:e€S S:e€eS
rs,ya,8 >0 foral SeS, ACU

It is easy to observe that every policy corresponds to an LP solution whose value is the expected
cost of this policy. So, the optimal LP solution can only be cheaper than the optimal policy. If
p4 > 0 only for a small number of sets, we can solve this linear program in polynomial time.

4 Offline Set Cover and the Greedy Algorithm

Every solution to the Set Cover problem also corresponds to a feasible solution to the LP
relaxation. However, the best fractional solution can be cheaper but not arbitrarily so. We
have seen before how to round LP solutions to feasible Set Cover solutions. But there is an
even easier approach: Run a simple greedy algorithm. We will show that the cost of its solution
are also bounded in terms of the cheapest LP solution.

The greedy algorithm for offline Set Cover is truly simple. It works as follows

e Initially, set U’ := U
e While U’ # ()

— Let S be the set that minimizes ﬁ
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— Add S to C,set U':=U"\ S.
So, in every step, the algorithm chooses the set S of minimum cost per newly covered element.

Theorem 11.1. Let C be the cover computed by the greedy algorithm, let x* be the optimal
solution to the LP relaxation. Then ) g o cs < O(logm) Y gogcstl, where m = |U|.

Proof. Every element gets removed from U’ at some point. Let e;, be the k" element that is
removed from the set U’, breaking ties arbitrarily. Element e; gets removed from U’ because it
is covered by some S for the first time; later more sets covering e; can follow, which we ignore.
Let Sy denote this set S which covers ej, for the first time and let U}, denote the state of U’ at
the beginning of the iteration in which ey is removed.

We define

Sy
Sk N U

as the cost per newly-covered element that we incur when covering element e;. Note that while
covering ej, we may cover elements for the first time as well and we split up the cost of set cg,
evenly among them. By this definition, we can write the cost that our algorithm incurs as

m
ZCS = Zpk .
k=1

SecC

Pr =

We claim that 5 i
< 248e8 STy ' 1
Pk = k1 (1)

This then implies

25es €Sty L L x
Fes =3 3B 5 3 Ol Yoo
seC Ses k=1 Ses
which is exactly what we claimed.
So, it only remains to show (1). Recall that S; minimizes i SEU,‘ That is, we can write
cs cs
mm = min min ————
PR=TNS AU ~ cev; sees SN UL
The last step looks a bit redundant but now we have two minimum operators that we can talk
about. Note that any minimum is always upper-bounded by any (weighted) average. That is,
we have

cs
min min

S S \U’\ Z seesySmey

Furthermore, because z* is a feasible LP solution Z geeg T > 1 for all e. So,
. Cs * Ccs
min = < TSTT AT
Sees [S N UL S;S 1S N UL
In combination, we have

1
JUTS ‘U’| Z Z S|SﬂU' ‘U" Z csrg < | ZCS$S ,

€U}, S:eeS k1 s:snU;£0 SGS

where the second-to-last step is only a re-ordering of the sum.

Equation (1) now follows because |U}| = m—k+1 because before the k'™ element is removed,
there are at least m — k+1 left. There might be even more because other elements get removed
in the same iteration. O
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5 Algorithm for Stochastic Set Cover

Now, we can proceed to the multi-stage variant. As said before, our algorithm first solves the
LP relaxation and obtains an optimal solution (z*,y*). We turn it into a policy as follows.

o Let Uy be the set of all elements e such that ¢, ..q2% > % Make sure to cover these
elements in the first stage, e.g., by running the greedy algorithm on Uy with costs (ck)ses.

e Cover A\ Uy in the second stage, e.g., by running the greedy algorithm on A\ Uy with
costs (cd)ses-

The policy is clearly feasible because whatever A is drawn, each e € A is covered in the second
stage at the latest.

Theorem 11.2. The algorithm turns any fractional solution to the LP into a feasible policy of
at most O(logm)-times the optimal cost in polynomial time.

Proof. Let us understand the cost of the first stage of our policy. We defined it to cover Uy.
The (deterministic) LP relaxation of this problem is the following.

minimize E cgmg

SeS

subject to Z zg >1 for all e € Uy
S:eeS
x5 >0 forall SeS

Observe that 2z* is a feasible solution by the way we defined Uy. So the optimal value is at
most 2) g.g ch’é This means that, by Theorem 11.1, our first-stage selection has a cost of at
most

O(logm) - 2 Z ckak
sSes

In the second stage, we only have to cover A\ Uy. Observe that for all e € A\ Uy

because (z*,y*) is a feasible LP solution. So, we can follow just the same idea as above and get
a cover of cost at most

Oflogm) -2 3" My 5 -
SeS

In combination, our cover will cost in expectation

O(logm) - <Z sy + ZPA Z ngz,s>

SeS A SeS
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