Algorithms and Uncertainty, Summer 2020 Lecture 9 (4 pages)

Pandora’s Box

Thomas Kesselheim Last Update: May 18, 2020

Today, we will get to know another example of a stochastic problem, which can be captured
by a Markov decision process with a huge state space. The optimal policy, however, is not
difficult to compute. It is, in fact, a good representative for many similar problems.

1 Problem Statement

We have n boxes. Each of the boxes contains a prize of a certain value. We may open as many
boxes as we like. However, opening a box costs a certain amount. We are only allowed to take
home a single one of the prizes. We may adapt our choices depending on what we find in the
boxes that we open.

More formally, box i contains a prize of value v;. We don’t know v; but only its distribution
until we open the box. Opening box ¢ costs ¢;. The final reward is given as

max V; — E Cc;

i:box i opened . -
i:box i opened

where we define the maximum as 0 if no boxes are opened.

We skip the detailed description as a Markov decision process this time. You should notice
that we need to store the maximum prize so far and which boxes have been opened. So, the
state space is again exponential in the number of boxes. The actions are to choose boxes, which
give no immediate reward, and there is a further action STOP, which pays out the final reward.

Example 9.1. Consider the case of two boxes. The prize in the first box is 4 with probability %
and 0 otherwise. The prize in the second box is 2 with probability 1. Each box costs 1 to open.
The optimal policy in this case is to first open the first box. If we find the prize of 4, there
is mo point in opening the second box; our reward is 4 — 1 = 3. If we do not find the prize, we
open the second box; our reward is 2 — 2 = 0. So, the expected reward is %
There are multiple other policies. For example, we could open the second box first. Regardless
of what we do then, the expected reward will always be 1.

The problem was introduced by Weitzman in 1979. In his original paper, he calls the acting
agent “Pandora”. If you are familiar with Greek mythology, you may or may not find this
appropriate. One aspect is true for sure: We might regret having opened a box. If we find a
better prize later, the cost for opening the earlier box has already been paid but its content is
worthless.

2 The Problem of a Single Box

Let us first consider the problem in which there is only a single box. Would we open it? There
is certainly no point in opening it if ¢; > E [v;] because the expected prize cannot compensate
the cost. If there are multiple boxes, this would only be worse. Therefore, we assume without
loss of generality that ¢; < E [v;] for all i. We simply ignore the boxes for which this does not
hold.



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 2 of 4)

Now, suppose there is an investor offering us a deal: They cover the cost of opening the box
but keep some of the prize in return. For precisely, they will open the box and keep everything
of the prize above a cap o; (to be defined below). We keep only everything below the cap.

That is, we split the value v; into two parts, namely a capped value k; and a bonus b;:
If v; < oy, then k; = v; and b; = 0. Otherwise, if v; > o, then k; = 0; and b; = v; — 0.
Equivalently, we can set b; = max{0,v;—0;}, k; = v; —b;. By these definitions always k;+b; = v;
and k; < ;. So, in other words, we cap the value v; at o;. Everything above the cap is moved
to bl

Example 9.2. Consider again the first box from the previous example. That is, v1 = 4 with
probability %, v1 = 0 otherwise. If o1 > 4, always k1 = vy.
If o1 < 4, then k1 = 01 and by = 4 — 01 whenever v1 = 4. Both are 0 when v1 = 0. So, the
1

expected capped value is E [r1] = o1, the expected bonus is E [b)] = 3(4 — 01) =2 — 3071.

Depending on the cap o;, this may or may not be a good deal for the investor. More
precisely, the investor’s utility after deducting the cost will be E [b;] — ¢; in expectation. We
will choose o; so that this is exactly 0. We call this the fair cap.

To make this formal, note that for o; = 0, we always have b; = v; and so E [b;] = E [v;] > ¢;.
For 0; — oo, we always have b; = 0, meaning that also E [b;] = 0. As E [;] is continuous in o,
there has to be a value o; for which ¢; = E [b;].

Example 9.3. In our example from above, the fair cap is 2 because then E [b1] = ¢ = 1.

3 Policy for Multiple Boxes

We can now state our fair-cap policy: Open the boxes by decreasing fair cap o;. Stop when the
largest observed value v+ exceeds the highest remaining cap and select i*.

That is, we can without loss of generality assume that the boxes are ordered such that
01> 09 > ... > 0,. We then open the boxes in a fixed order 1,2,...,n until at some point
0; < max; -; vy, at which point we stop.

One way to think about this policy is as follows. The fair cap o; expresses what prize we
can hope to get from box ¢ after having deducted the cost. We start with the most promising
box and continue opening boxes up to the point at which we do not hope to gain anything from
opening any of the remaining boxes.

One interesting aspect of the policy is that the order in which boxes are opened does not
depend on the observations. We will see a related but different problem very soon, in which
one has to adapt choices.

Theorem 9.4. The fair-cap policy is optimal.

In the following, we will use two kinds of indicator random variables to denote the choices
by a policy.

e Let I; = 1 if the policy opens box i. (It inspects the box.)
e Let A; =1 if the policy keeps the prize in box i. (It accepts the box.)

First, we will express the expected reward of any policy in terms of its I; and A; random
variables.

Lemma 9.5. The expected value of any policy w is given by



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 3 of 4)

e maximum prize seen

— — fair cap

Figure 1: The fair caps only decrease while the maximum prize seen so far only increases.
So, in words, in expectation, the reward is equal to the capped value of the box whose prize
is accepted minus the bonuses of all boxes that are opened but not accepted.
Proof. By definition
Vir)=E

Z Aivi — Z IZ‘Ci]

By definition, v; = k; + b;. So, by linearity of expectation, we have

E

Z Aivi — Z Iici] = Z (E [Alvz] —E [Il] Ci) = Z (E [A@Hz] +E [Azbl] —E [Il] Ci)

% %

Now, we use the definition of o; as the fair cap. Therefore, we have ¢; = E [b;]. Furthermore, b; is
a random variable that only depends on v; whereas I; cannot depend on v; — when making the
decision to open box i, the policy does not know v;. Therefore E [I;] ¢; = E [L;| E [b;] = E [1;b;].
So, overall

V(m) =Y (B[4 + E[Ad] - E[L]c;) = > (E[Air] + E [A:bi] - E [Lbi])
The statement follows by linearity of expectation. O

In the remainder, we will show that the fair-cap policy maximizes ), A;x; — (I; — A;)b;
among all policies and is therefore optimal. We will do this in two steps.

Lemma 9.6. The fair-cap policy always selects the box of highest capped value. That is,
ZAmi = maxk; .
- 7
7

For the proof, it is important that the fair caps only decrease but the maximum observed
prize only increases as it is visualized in Figure 1.

Proof. Let ij,5; be the index of the last box to be opened and let i* < 4,4 be the index of the
box that we accept. We would like to show that x; < ki« for all 7. To this end, we distinguish
whether the prize that we accept exceeds its cap or not.

Case 1: v+ < 04%. SO Kjx = ;.
For i < .6, we have
ki < (by definition)
< vy (because v;« is the highest of all prizes up to 4jagt)

= Kij* (because v+ < 0+ )



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 4 of 4)

For i > i1, we have

ki < 0; (by definition)
< O +1 (by monotonicity)
< vy (because we stop opening boxes)
= ki (because v+ < o+ )

Case 2: v« > 0. S0 Kjx = 0.
In this case, i* = 71,5t because g1 < g4+, so we do not open box ¢* + 1.
For i < d1,5t, we have

ki < (by definition)
< it (because we did not stop opening boxes)
= K (as observed)

ki < 0; (by definition)
< Ot (by monotonicity)
= Kjx (as observed) O

Lemma 9.7. Our policy always fulfills (I; — A;)b; = 0 for all i.

Proof. If I; = 0 or b; = 0, the statement follows trivially. So, we only have to understand what
happens if I; = 1 and b; > 0. Consider the situation that the policy opens a box and b; > 0. In
this case, v; > 0;. So, it is certainly the last box to be opened. Furthermore, because box ¢ was
opened, the maximum value found in boxes 1,...,7 — 1 is at most ¢;. That is, v; is the highest
value found in boxes 1,...,4 and therefore A; = 1. O

Proof of Theorem 9.4. Consider any other policy 7’ and let its indicators be denoted by (A;)ie[n},
(I})ic[n)- By Lemma 9.5, we have

Vi(r') = ZE [Ajk; — (I} — A)b;] < ZE [Ajk;] <E [max m}
For our policy, we have (I; — A;)b; = 0. So,

V(m) = ZZ:E [Aik; — (I; — A)b;] = E - E [mzax ,QZ}

Z Ai/ii

References

e Martin L. Weitzman. Optimal search for the best alternative. Econometrica. 1979.

e Blog post by Bo Waggoner: http://www.bowaggoner.com/blog/2018/07-20-pandoras-box/



