
Algorithms and Uncertainty, Summer 2020 Lecture 9 (4 pages)

Pandora’s Box

Thomas Kesselheim Last Update: May 18, 2020

Today, we will get to know another example of a stochastic problem, which can be captured
by a Markov decision process with a huge state space. The optimal policy, however, is not
difficult to compute. It is, in fact, a good representative for many similar problems.

1 Problem Statement

We have n boxes. Each of the boxes contains a prize of a certain value. We may open as many
boxes as we like. However, opening a box costs a certain amount. We are only allowed to take
home a single one of the prizes. We may adapt our choices depending on what we find in the
boxes that we open.

More formally, box i contains a prize of value vi. We don’t know vi but only its distribution
until we open the box. Opening box i costs ci. The final reward is given as

max
i:box i opened

vi −
∑

i:box i opened

ci ,

where we define the maximum as 0 if no boxes are opened.
We skip the detailed description as a Markov decision process this time. You should notice

that we need to store the maximum prize so far and which boxes have been opened. So, the
state space is again exponential in the number of boxes. The actions are to choose boxes, which
give no immediate reward, and there is a further action stop, which pays out the final reward.

Example 9.1. Consider the case of two boxes. The prize in the first box is 4 with probability 1
2

and 0 otherwise. The prize in the second box is 2 with probability 1. Each box costs 1 to open.
The optimal policy in this case is to first open the first box. If we find the prize of 4, there

is no point in opening the second box; our reward is 4− 1 = 3. If we do not find the prize, we
open the second box; our reward is 2− 2 = 0. So, the expected reward is 3

2 .
There are multiple other policies. For example, we could open the second box first. Regardless

of what we do then, the expected reward will always be 1.

The problem was introduced by Weitzman in 1979. In his original paper, he calls the acting
agent “Pandora”. If you are familiar with Greek mythology, you may or may not find this
appropriate. One aspect is true for sure: We might regret having opened a box. If we find a
better prize later, the cost for opening the earlier box has already been paid but its content is
worthless.

2 The Problem of a Single Box

Let us first consider the problem in which there is only a single box. Would we open it? There
is certainly no point in opening it if ci > E [vi] because the expected prize cannot compensate
the cost. If there are multiple boxes, this would only be worse. Therefore, we assume without
loss of generality that ci ≤ E [vi] for all i. We simply ignore the boxes for which this does not
hold.



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 2 of 4)

Now, suppose there is an investor offering us a deal: They cover the cost of opening the box
but keep some of the prize in return. For precisely, they will open the box and keep everything
of the prize above a cap σi (to be defined below). We keep only everything below the cap.

That is, we split the value vi into two parts, namely a capped value κi and a bonus bi:
If vi ≤ σi, then κi = vi and bi = 0. Otherwise, if vi > σi, then κi = σi and bi = vi − σi.
Equivalently, we can set bi = max{0, vi−σi}, κi = vi−bi. By these definitions always κi+bi = vi
and κi ≤ σi. So, in other words, we cap the value vi at σi. Everything above the cap is moved
to bi.

Example 9.2. Consider again the first box from the previous example. That is, v1 = 4 with
probability 1

2 , v1 = 0 otherwise. If σ1 ≥ 4, always κ1 = v1.
If σ1 < 4, then κ1 = σ1 and b1 = 4− σ1 whenever v1 = 4. Both are 0 when v1 = 0. So, the

expected capped value is E [κ1] = 1
2σ1, the expected bonus is E [b1] = 1

2(4− σ1) = 2− 1
2σ1.

Depending on the cap σi, this may or may not be a good deal for the investor. More
precisely, the investor’s utility after deducting the cost will be E [bi] − ci in expectation. We
will choose σi so that this is exactly 0. We call this the fair cap.

To make this formal, note that for σi = 0, we always have bi = vi and so E [bi] = E [vi] ≥ ci.
For σi →∞, we always have bi = 0, meaning that also E [bi] = 0. As E [bi] is continuous in σi,
there has to be a value σi for which ci = E [bi].

Example 9.3. In our example from above, the fair cap is 2 because then E [b1] = c1 = 1.

3 Policy for Multiple Boxes

We can now state our fair-cap policy: Open the boxes by decreasing fair cap σi. Stop when the
largest observed value vi∗ exceeds the highest remaining cap and select i∗.

That is, we can without loss of generality assume that the boxes are ordered such that
σ1 ≥ σ2 ≥ . . . ≥ σn. We then open the boxes in a fixed order 1, 2, . . . , n until at some point
σi < maxi′<i vi′ , at which point we stop.

One way to think about this policy is as follows. The fair cap σi expresses what prize we
can hope to get from box i after having deducted the cost. We start with the most promising
box and continue opening boxes up to the point at which we do not hope to gain anything from
opening any of the remaining boxes.

One interesting aspect of the policy is that the order in which boxes are opened does not
depend on the observations. We will see a related but different problem very soon, in which
one has to adapt choices.

Theorem 9.4. The fair-cap policy is optimal.

In the following, we will use two kinds of indicator random variables to denote the choices
by a policy.

• Let Ii = 1 if the policy opens box i. (It inspects the box.)

• Let Ai = 1 if the policy keeps the prize in box i. (It accepts the box.)

First, we will express the expected reward of any policy in terms of its Ii and Ai random
variables.

Lemma 9.5. The expected value of any policy π is given by

V (π) =
∑
i

E [Aiκi − (Ii −Ai)bi] .



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 3 of 4)

iilast

maximum prize seen

fair cap

Figure 1: The fair caps only decrease while the maximum prize seen so far only increases.

So, in words, in expectation, the reward is equal to the capped value of the box whose prize
is accepted minus the bonuses of all boxes that are opened but not accepted.

Proof. By definition

V (π) = E

[∑
i

Aivi −
∑
i

Iici

]
.

By definition, vi = κi + bi. So, by linearity of expectation, we have

E

[∑
i

Aivi −
∑
i

Iici

]
=
∑
i

(E [Aivi]−E [Ii] ci) =
∑
i

(E [Aiκi] + E [Aibi]−E [Ii] ci) .

Now, we use the definition of σi as the fair cap. Therefore, we have ci = E [bi]. Furthermore, bi is
a random variable that only depends on vi whereas Ii cannot depend on vi — when making the
decision to open box i, the policy does not know vi. Therefore E [Ii] ci = E [Ii]E [bi] = E [Iibi].
So, overall

V (π) =
∑
i

(E [Aiκi] + E [Aibi]−E [Ii] ci) =
∑
i

(E [Aiκi] + E [Aibi]−E [Iibi]) .

The statement follows by linearity of expectation.

In the remainder, we will show that the fair-cap policy maximizes
∑

iAiκi − (Ii − Ai)bi
among all policies and is therefore optimal. We will do this in two steps.

Lemma 9.6. The fair-cap policy always selects the box of highest capped value. That is,∑
i

Aiκi = max
i
κi .

For the proof, it is important that the fair caps only decrease but the maximum observed
prize only increases as it is visualized in Figure 1.

Proof. Let ilast be the index of the last box to be opened and let i∗ ≤ ilast be the index of the
box that we accept. We would like to show that κi ≤ κi∗ for all i. To this end, we distinguish
whether the prize that we accept exceeds its cap or not.

Case 1: vi∗ ≤ σi∗ . So κi∗ = vi∗ .
For i ≤ ilast, we have

κi ≤ vi (by definition)

≤ vi∗ (because vi∗ is the highest of all prizes up to ilast)

= κi∗ (because vi∗ ≤ σi∗)



Algorithms and Uncertainty, Summer 2020 Lecture 9 (page 4 of 4)

For i > ilast, we have

κi ≤ σi (by definition)

≤ σilast+1 (by monotonicity)

≤ vi∗ (because we stop opening boxes)

= κi∗ (because vi∗ ≤ σi∗)

Case 2: vi∗ > σi∗ . So κi∗ = σi∗ .
In this case, i∗ = ilast because σi∗+1 ≤ σi∗ , so we do not open box i∗ + 1.
For i < ilast, we have

κi ≤ vi (by definition)

≤ σilast (because we did not stop opening boxes)

= κi∗ (as observed)

For i > ilast, we have

κi ≤ σi (by definition)

≤ σilast (by monotonicity)

= κi∗ (as observed)

Lemma 9.7. Our policy always fulfills (Ii −Ai)bi = 0 for all i.

Proof. If Ii = 0 or bi = 0, the statement follows trivially. So, we only have to understand what
happens if Ii = 1 and bi > 0. Consider the situation that the policy opens a box and bi > 0. In
this case, vi > σi. So, it is certainly the last box to be opened. Furthermore, because box i was
opened, the maximum value found in boxes 1, . . . , i− 1 is at most σi. That is, vi is the highest
value found in boxes 1, . . . , i and therefore Ai = 1.

Proof of Theorem 9.4. Consider any other policy π′ and let its indicators be denoted by (A′i)i∈[n],
(I ′i)i∈[n]. By Lemma 9.5, we have

V (π′) =
∑
i

E
[
A′iκi − (I ′i −A′i)bi

]
≤
∑
i

E
[
A′iκi

]
≤ E

[
max

i
κi

]
.

For our policy, we have (Ii −Ai)bi = 0. So,

V (π) =
∑
i

E [Aiκi − (Ii −Ai)bi] = E

[∑
i

Aiκi

]
= E

[
max

i
κi

]
.

References

• Martin L. Weitzman. Optimal search for the best alternative. Econometrica. 1979.

• Blog post by Bo Waggoner: http://www.bowaggoner.com/blog/2018/07-20-pandoras-box/


