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Let us consider the following online selection problem, in which you have to make commitments
before you know all you choices. Suppose you want to buy a house. You go see several houses
and (a bit simplifying here) after each visit you have to decide immediately and irrevocably if
you want to buy this particular house or if you want to keep on looking – then somebody else
will buy it. Another motivation would be that you want to find the love of your life. You start
dating and (even more simplifying here) after each first date you have to decide whether you
you want to marry this person or if you want to keep looking.

We can model this problem as follows. There are n candidates of values v1, . . . vn ∈ R,
vi ≥ 0. You see the values of these candidates in order 1, . . . , n. After having seen the i-th
candidate you can choose to select it or to reject it. The goal is to maximize the value of the
candidate that you select.

1 Known Distributions

You might have heard of this problem as the secretary problem. Here, the candidates arrive
in random order and you have no prior knowledge. We make a different assumption today:
We assume that each vi is drawn from a probability distribution. The probability distributions
may differ between different rounds. All distributions are known in advance. Each draw is
independent. The arrival order, however, is always fixed to be 1, . . . , n and not random.

Example 8.1. The values vi could come from the following distributions.

v1 ∼ Uniform{0, 1, 2, 10} v2 ∼ Uniform{0, 3}
v3 ∼ Uniform{0, 1, 2, 3} v4 ∼ Uniform{1, 2}

We would definitely accept a 10 in the first step. But would we accept a value of 2? Or would
we take our chance to get a 3 later on? After all, E [v2] = E [v3] = E [v4] = 3

2 .

This problem can be modeled as a Markov decision process. There are two actions stop
and continue. The states are a little more complicated. In the state space, we have to store
the current i and vi that we are deciding on. If we choose action stop in state (i, vi), we get
a reward of vi and move to state stopped. If we choose action continue, then we get no
reward and move to state (i+ 1, vi+1). The state stopped simply means that we have already
stopped the sequence, so any action makes us remain in the state and gives no reward. To get
the initialization correct, we start from state (0, 0) and have a time horizon of T = n + 1. To
avoid technicalities, we assume that each vi can attain only finitely many values. Then the state
space can also be finite, namely ({0, 1, . . . , n}×X)∪{stopped}, where X is the set of possible
values for v1, . . . , vn. In principle, all of our results today also hold for X = R≥0.

2 Characterizing the Optimal Policy

We will now characterize the optimal policies. Recall that we defined V ∗(s, T ) to be the expected
reward of an optimal policy started at state s and running for T steps. We derived that

V ∗(s, T ) = max
a∈A

(
ra(s) +

∑
s′∈S

pa(s, s
′)V ∗(s′, T − 1)

)
. (1)
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In our particular case, we are in states (i, vi) when there are n− i+1 more steps to go unless
we have already stopped. There are only two actions: One gives immediate reward vi and none
in the future; the other one only moves on to (i + 1, vi+1). So, if in (i, vi), the optimal policy
chooses stop, then

vi ≥
∑
y

Pr [vi+1 = y]V ∗((i+ 1, y), n− i) ,

if it chooses continue, then

vi ≤
∑
y

Pr [vi+1 = y]V ∗((i+ 1, y), n− i) ,

Note that the right-hand side is nothing but the expected reward of an optimal policy that sees
only the subinstance vi+1, . . . , vn. In particular, the right-hand side is independent of vi. This
means that we simply have a threshold for vi, which it has to exceed in order to be accepted.

Theorem 8.2. It is an optimal policy to use thresholds τ1 ≥ . . . ≥ τn such that in the i-th step
we accept if vi > τi and reject if vi < τi. The thresholds are defined recursively by τn = 0 and
τi = E [max{vi+1, τi+1}] for i < n.

The optimal policy is unique except for the tie-breaking at τi = vi, which is irrelevant.

Proof. We will show that the sequence τi as defined in the theorem is exactly the expected
reward of an optimal policy on only vi+1, . . . , vn. That is,

τi = E [V ∗((i+ 1, vi+1), n− i)] .

We show this by induction on i downward from n to 1. The induction base i = n is trivial
because the policy’s reward is 0 on an empty sequence. Recall that we defined V ∗(s, 0) = 0 for
all s.

For the induction step, we assume that τi is the expected reward of an optimal policy on
vi+1, . . . , vn and we would like to derive the respective statement for i − 1. Recall that, by
Equation (1), an optimal policy’s expected reward on vi, . . . , vn for a fixed vi is

V ∗((i, vi), n− i+ 1) = max
a∈A

(
ra((i, vi)) +

∑
s′∈S

pa((i, vi), s
′)V ∗(s′, n− i)

)
,

for a = stop, the term is exactly vi; for a = continue, it is E [V ∗((i+ 1, vi+1), n− i)]. By
induction hypothesis E [V ∗((i+ 1, vi+1), n− i)] = τi. Therefore, for any fixed vi

V ∗((i, vi), n− i+ 1) = max{vi, τi} .

Taking the expectation over vi, this completes the induction.
We can also derive the structure of the policy. If vi > τi, the maximum is attained at

a = stop. So this is what the optimal policy has to do. If vi < τi, the maximum is attained at
a = continue. If vi = τi, both actions give the same expected reward, so any choice leads to
an optimal policy.

Note that also the sequence of thresholds is non-increasing. This follows immediately from
the recursion. There is also another, intuitive explanation: We set τi to be the reward of an
optimal policy on only vi+1, . . . , vn. One such policy would be to ignore vi+1 and only operate
on vi+2, . . . , vn. Therefore τi ≥ τi+1.
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Example 8.3. We derive an optimal policy for the example above with

v1 ∼ Uniform{0, 1, 2, 10} v2 ∼ Uniform{0, 3}
v3 ∼ Uniform{0, 1, 2, 3} v4 ∼ Uniform{1, 2}

We get τ4 = 0 and τ3 = E [max{v4, 0}] = E [v4] = 3
2 .

Deriving τ2 is a little more complicated. It is

τ2 = E

[
max

{
v3,

3

2

}]
=

1

2
· 3

2
+

1

4
· 2 +

1

4
· 3 = 2 .

For τ1, we therefore get

τ1 = E [max {v2, 2}] =
1

2
· 2 +

1

2
· 3 =

5

2
.

We can also derive the expected reward of this optimal policy as

E [max{v1, τ1}] =
3

4
· 5

2
+

1

4
· 10 =

35

8
.

3 Comparison to the Offline Optimum

Clearly, one could get a higher reward than the optimal policy if one knew the entire sequence
v1, . . . , vn in advance. Then, one would stop the sequence at its highest value and get reward
maxi vi. This is exactly the definition of the offline optimum in competitive analysis. But how
much better can the offline optimum be? Interestingly, the factor is bounded here.

Theorem 8.4. The optimal policy’s expected reward is at least 1
2E [maxi vi].

Such a theorem is called a “prophet inequality”. The result was developed independently of
competitive analysis. When talking about the offline optimum, the researchers had a prophet
in mind, who knows the future and makes decisions depending on this. Any (online) policy is
only a gambler, who does not know the future but can take a chance on the outcome.

There is a very elegant and simple proof of this prophet inequality. Rather than establishing
the bound for the (complicated) optimal policy, we will define a much simpler policy, which we
can talk about more easily.

The simple policy is defined as follows. Set a threshold τ = 1
2E [maxi vi]. Stop the sequence

the first time we see a value vi ≥ τ .
The simple policy is clearly suboptimal. For example, even in the last step the threshold

applies. So, if we reach the last step and vn < τ , then the policy gets no reward, although it
could easily collect vn. Nonetheless, the guarantee holds also for this policy and the optimal
policy’s reward can only be higher.

Proposition 8.5. The single-threshold policy’s expected reward V (π) is at least 1
2E [maxi vi].

Proof. Let q be the probability that the sequence is not stopped at all. That is, q = Pr [v1 < τ, . . . , vn < τ ].
Furthermore, for all i, define a random variable ui by setting ui = vi−τ if the sequence is stopped
at i and ui = 0 otherwise. The expected reward of the policy is given by

V (π) = E

[∑
i

ui

]
+ (1− q)τ . (2)
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This is because at most one of the ui will be positive and its value will be by how much the
threshold was exceeded. We have to add the threshold but only with the probability that at
least one number beats it.

Depending on your background, the following interpretation may be helpful. We sell one
item at a price of τ among buyers of values v1, . . . , vn. The first buyer willing to pay τ gets the
item and pays τ . Then ui will be the respective buyer’s utility and (1−q)τ will be the expected
revenue.

For all i, we have ui = max{vi − τ, 0} · 1v1<τ,...,vi−1<τ , where 1 denotes the 0/1 indicator.
Therefore, by independence, we have

E [ui] = E
[
max{vi − τ, 0} · 1v1<τ,...,vi−1<τ

]
= E [max{vi − τ, 0}]Pr [v1 < τ, . . . , vi−1 < τ ] .

Note that Pr [v1 < τ, . . . , vi−1 < τ ] ≥ Pr [v1 < τ, . . . , vn < τ ] = q, and so

E [ui] ≥ E [max{vi − τ, 0}] q .

Taking the sum over all i, linearity of expectation gives us

E

[∑
i

ui

]
≥ E

[∑
i

max{vi − τ, 0}

]
q .

Furthermore, every sum of non-negative numbers is at least the maximum of these numbers,
which means ∑

i

max{vi − τ, 0} ≥ max
i

max{vi − τ, 0} ≥ max
i
vi − τ .

This gives us

E

[∑
i

ui

]
≥ E

[
max
i
vi − τ

]
q =

(
E

[
max
i
vi

]
− τ
)
q .

Plugging this into Equation (2), we get

V (π) ≥
(
E

[
max
i
vi

]
− τ
)
q + (1− q)τ .

This statement holds for all choices of τ . Using τ = 1
2E [maxi vi], we get

V (π) ≥ 1

2
E

[
max
i
vi

]
q + (1− q)1

2
E

[
max
i
vi

]
=

1

2
E

[
max
i
vi

]
,

regardless of q. Therefore, the claim holds.

This guarantee is optimal.

Proposition 8.6. The guarantee in Theorem 8.4 cannot be improved.

Proof. Consider v1 = 1 with probability 1, v2 = 1
ε with probability ε, v2 = 0 otherwise. There

are effectively two policies: Stop at v1 = 1 or continue. Both policies have an expected reward
of 1 but E [maxi vi] = (1− ε) + ε1ε = 2− ε. This holds for all ε > 0, so the ratio gets arbitrarily
close to 1/2.


