Algorithms and Uncertainty, Summer 2020 Lecture 7 (5 pages)

Markov Decision Processes

Thomas Kesselheim Last Update: May 11, 2020

As a motivation, consider the following game: There are n envelopes. Envelope i contains
prize v; > 0 with probability ¢; € [0,1]. With probability 1 — ¢; it is empty. You may open
envelopes and keep the prizes as long as you do not open an empty envelope.

What is the best strategy to play this game? One might be tempted to act myopically:
Open the envelope of highest expected reward g¢; - v;. This is, for example, a bad idea in the
following setting:

1 .
v1 = 1000, N = 1507 vi=¢g=1fori>1.
Here, we would open envelope 1 first but with 99 % chance, we do not get anything. It is much
better to first open envelopes 2,...,n and only then to take the chance and open envelope 1.

Today’s goal will be to introduce a general model for such stochastic decision problems, to
describe optimal policies and give algorithms to compute them.

1 Markov Decision Processes

A Markov Decision Process is defined by a set of states S, a set of actions A, a reward function
that defines a reward rq(s) for taking action a € A in state s € S and a random transition
function, which is defined by probabilities py(s, s’): If we are in state s € S and we take action
a € A, then we move on to state s’ € S with probability p,(s,s’) € [0, 1].

The process works as follows. We start from state s; € S, choose one action a € A. We
immediately get reward r,(s) € R and then continue to a random state s’, which is given by
the probability distribution py(s1,-). This way, a sequence si, so, ... evolves. We move from
st to si+1 by the probability distribution p,(s¢,-). So, the probabilities only depend on the
current state and the current action but not on which states we have seen before. This makes
the process Markovian.

Generally, rewards may also be random, just as in our example above. To capture this, set
rq(8) to the expected reward that you get when taking action a in state s.

On the one hand, this generalizes a deterministic finite automaton. Here, for each a and s,
there is exactly one s’ for which p,(s,s’) = 1 and p,(s,s’) = 0 otherwise. On the other hand,
it is also a generalization of a Markov chain. Here, A has only one element (an action like
“continue”) and then we move through states without having a real choice.

Example 7.1. Let us define the Markov decision process for the motivating example with the
envelopes. In the state, we have to keep track which envelopes were opened so far and if any of
them was empty. This is done by S = 2"l U {sToP}, where [n] = {1,...,n}.

FEach action corresponds to opening an envelope. Therefore, A = [n]. Let us define the state
transitions. For s € 2" we set py(s,s U {a}) = qa and pq(s,STOP) = 1 — q4 for all a € [n].
Furthermore, p,(STOP,STOP) = 1 to ensure that we remain in state STOP once an envelope was
empty. All other probabilities are set to Q.

The reward from opening an envelope is the expected prize inside, so rq(s) = qq - Vg for
s e 2 with a ¢ s.

In principle, in any state, any action may be performed. So, we cannot forbid a policy to
open an envelope twice. We can only penalize this is terms of rewards, for example by setting
ra(s) = —oco if s € 2", a € s. Also in state STOP, the actions are still available although no

Algorithms and Uncertainty, Summer 2020 Lecture 7 (page 2 of 5)

more envelopes may be opened. By setting r,(STOP) = 0 for all a € A, effectively these actions
do not matter.

2 Policies and Their Structure

A policy m assigns to each sequences of states s1,...,s.-1 € S an action 7(sy,...,8-1) € A.
So, if we run policy 7 starting from s1, we pass through a random sequence of states s7,s7, ...,
using a random sequence of actions af,aj,

Generally, we can move through a Markov decision process for unbounded time. We will
first focus on the case of a finite time horizon. That is, there is some T such that we do not
care what happens after time 7. In this case, we can write the expected reward of policy 7
when starting at s; as

V(r,s1,T) =E

T
Z TaT (5?)]
t=1
We also define V*(s1,T) as the highest expected reward that one can achieve starting from
s1 in T steps, that is, V*(s1,T) = maxpolicy » V (7, s1,T). (Note that there are only finitely
many histories si,...,s:_1 for t < T and therefore only finitely many different policies, so the
maximum is well-defined.)

Consider an optimal policy =, that is V (7, s1,T) = V*(s1,T). As af is deterministic, we

sgzs’]

might as well write

T

> rap(s7)

t=2

V(m,s1,T) = TaT (s1)+E

T
Z rag(s?)] =747 (s1) + Z Par(s1,5)E

t=2 s'eS

Let us inspect the expectation on the right-hand side. We claim that

T
Z TaT (8?)
t=2

The reason is simple: Both is the maximum expected reward that we would receive from a
Markov decision process running for 7' — 1 steps, starting from s’. On the left-hand side, we
actually start from s; but this does not make a difference for the remaining steps. Importantly,
rewards in the current step only depend on the current state and action, not on the past ones.

We skip the fleshed out formal argument here. One possible way is to assume that either
side is strictly larger than the other and observe that one could either add or remove s; from
the beginning of the history.

Consequently, we can define V*(s,T) for T > 1 recursively as

E =V, T—1) .

/
sh =s

V*(s,T) = max (ra(s) - Z Pa(s, sV (', T — 1)) (1)

cA
“ s'eS

and V*(s,0) = 0. These observations directly lead to the following theorem:

Theorem 7.2. For finite time horizons, there is an optimal policy that is Markovian. That is,
actions only depend on the current state and the number of remaining steps. An optimal policy
for a time horizon of T steps can be computed in time O(T - |S|* - | Al).

Proof. We can compute an optimal policy by dynamic programming. We have to compute T'-|S]
values of V* in total, each computation takes |S| - |A| steps. By tracing back the generation of
V*, we get a policy that is Markovian. O

Algorithms and Uncertainty, Summer 2020 Lecture 7 (page 3 of 5)

Example 7.3. Let us come back to our initial example with the envelopes. The time horizon
will be T = n because, in principle, all envelopes can be opened. Suppose we have only two

envelopes with, where
1

100’
Our intuition tells us that we should open envelope 2 first and then envelope 1. This gives us an
expected reward of 1410 = 11. By dynamic programming, we get the following table, where each
column corresponds to one state, each line to one time step and the entries to the maximum
expected reward:

21121000, q1 = U2=(]2:1 .

t| 0 {1y {2} {1,2} stoP
0] 0 0 0 0 0

1] 10 1 10 —00 0
2

11 -0 -0 — 0

Note that only the bold numbers are actually reachable from s1 = O with T = 2. We compute
V*(0,2) as follows. We could choose 1 as the first action. In this case, the expected reward is
10 + 17(1)0 -1+ % -0 = 10.01. Or, we could choose 2 as the first action. Then, the expected
reward is 1 +1-10 = 11.

3 Deriving the Optimal Policy

As we have just seen, in the initial example with the envelopes, the optimal policy can be
computed via dynamic programming. The downside is that the number of states is 2" + 1. So,
it is huge. And, as we will see, we can understand policies in a much more structured way.

Consider an optimal policy 7*. Note that 7* defines nothing but an order (i.e. a permuta-
tion) in which to open the envelopes as long as none was empty. We observe that if in the order
that 7* uses, i comes directly before j (meaning that it opens envelope i always before j), then
the following has to hold. Let s be the set of indices of envelopes opened before i. Applying
Equation (1) twice, we get

V*(s,T) =V (n*,5,T) = qui + ¢;V*(sU {i},T — 1)
= qivi + ¢i(qjv; + ¢V (sU{i, 5}, T —2)) .

It would also be feasible policy 7w to first open j, then 7, and then continue according to 7*.
This would give expected reward

V(Tr7 S,T) = qjv; + qj(qivi + QiV*(S U {i,j},T — 2)) ,

because we only have to swap ¢ and j in the previous expression. As 7* is optimal, we have
V(r*,s,T) > V(m,s,T), and therefore

qivi + ¢i(qjv; + ¢; V(s U{i, j}, T = 2)) = qjv; + q;(qivi + V" (s U{i, j}, T - 2)) ,
which is equivalent to
qiV; > q;jVj
1—q¢i — 1—gj
Consequently, it is optimal to open to envelopes by non-increasing 1"1—1;. The optimal policy

is unique up to breaking these ties (and choosing the actions from STOP and any unreachable
states, which are irrelevant).

Algorithms and Uncertainty, Summer 2020 Lecture 7 (page 4 of 5)

4 Bonus: A Stochastic Model for Ski Rental

In our first lecture we introduced a stochastic model for the Ski Rental problem. We defined it
such that there are T' days; each day is a skiing day with probability ¢. We can buy skis once
at a cost of B or rent them for a day at a cost of 1. This is, indeed also a very simple Markov
decision process.

One potential way to model it is as follows. We have three states SKIING, NOT-SKIING,
BOUGHT. There are two actions, RENT and BUY.

e In state SKIING, action RENT has a reward to —1 and makes us transition to SKIING with
probability ¢ and to NON-SKIING with probability 1 — ¢q. Action BUY has a reward of —B
and makes us transition to BOUGHT.

e In state NON-SKIING, both actions have no reward. They make us transition to SKIING
with probability ¢ and to NON-SKIING with probability 1 — gq.

e In state BOUGHT, every action always keeps us in BOUGHT and has no reward.

There is a small technicality: The starting state is always deterministic. However, we would
like it to be random. To this end, we add a day 0 as a non-skiing day.

Crucially, the optimal policy is Markovian. This means that its choices only depend on the
current state and how many steps are left. It is irrelevant how we came to this point.

To derive the optimal policy, we only have to understand under which circumstances it
chooses BUY in state SKIING. Generally, it is possible to derive this from Equation (1): We
would like to understand for which choices of T' is the maximum (meaning the smaller cost)
attained by a = BUY if s = SKIING. However, one easily gets lost in notation.

We switch from maximizing rewards to minimizing costs and let C'(7") denote the expected
cost on a sequence of T days (not counting day zero). The key observation is that if the policy
does not buy skis on the first day, it will face the exact same decision process with 7' — 1 steps.
For this reason

C(T) = qC(T-1)+1)+(1—-¢)C(Tr'—1) if optimal policy rents in (SKIING,T")
- \¢B+ (1 —q)C(T—1) otherwise

The algorithm ALG™ is defined to choose the cheaper of the two options. So
C(T)=qmin{C(T-1)+1,B}+(1—-¢qC(T-1) .

Let us understand this recursion. We start from C(0) = 0. Initially, we will have C(T" —
1)+ 1< Bandso C(T) =C(T — 1) + q, which means C(T) = ¢qT for the first values of T'. At
some point 7 we have C(T — 1) + 1 > B for the first time. More precisely, this is the smallest
7 such that ¢(7 —1) +1 > B, which is 7 = L% + 2J.

Note that C(T" — 1) + 1 > B to be true for larger 7. That is, for all T > 7, we have
C(T)=qB+(1—qC(T—-1).

One can solve this recursion further from here (see Figure 1 for the solution). However, this
is not necessary to derive the optimal policy. Recall that the minimum in the recursion comes
from the choice of the policy on the first day. We now know that in (SKIING,T"), the optimal
policy will buy the skis if T > 7 and rent them otherwise. An interesting consequence is that
the optimal policy will never first rent and then buy.

Algorithms and Uncertainty, Summer 2020 Lecture 7 (page 5 of 5)

Figure 1: Values of C(T') for B = 10, ¢ = 1—10. Right of 7, the function asymptotically approaches
B (but never actually reaches it).

