Algorithms and Uncertainty, Summer 2020 Lecture 6 (5 pages)

Online Steiner Tree

Thomas Kesselheim Last Update: May 6, 2020

Today, we will consider online versions of the Steiner tree problem. The problem will
also reappear later this semester in a different setting of uncertainty. All of these use similar
techniques, which we will introduce today.

Let us first state the classical offline Steiner tree problem. We state it here in a rooted
variant because this makes our life easier in settings with uncertainty. We are given a connected
graph G = (V, E), edge weights w(e) > 0 for e € E, aroot r € V, and a set of terminals 7" C V.
Our task is to select a subset of the edges S C E such that {r} UT is connected in G' = (V, S)
and) . gw(e) is minimized. Observe that if 7=V then this problem is exactly the minimum
spanning tree problem. It is an NP-hard problem.

In the online version, we only get to know the terminals in the set T one after the other.
That is, T = {t1,...,t} and in the i-th step, t; is revealed. At any point in time, we are
maintaining a set S such that S is a Steiner tree on {r} UT. We may only add but not remove
edges from S. In other words, immediately when terminal ¢; is revealed, we have to add edges
to S such that {r,t1,...,t;} is connected in G' = (V, S).

Example 6.1. In the following example, all edge weights are 1. The first terminal has to be
connected, either via the top or the bottom path. Both choice seem equally good at this point.
However, in the following step, the top or the bottom vertex may become the second terminal
and then it is either already connected or we have to add another edge.

1 Simplifications

Observe that any edge e = {u, v} in the Steiner tree can also be replaced by a path u, x1, ..., xp,v.
This keeps the solution feasible. Indeed, we should never add an edge to the Steiner tree if the
sum of edge weights on such a path is cheaper than the direct connection.

To simplify our life, we make this change implicit in the following. We assume that G =
(V, E) is a complete graph and we assume that the weights w(e) fulfill the triangle inequality.
That is, w({u,v}) < w({u,z}) + w({z,v}) for all u,v,x € V. Both assumptions are without
loss of generality. In both cases, instead of using the (non-existing or more expensive) direct
connection from u to v, we could take a shortest path from u to v.

2 Steiner Trees and Spanning Trees

As already mentioned, the spanning-tree problem is exactly the special case of the Steiner-
tree problem in which all vertices are terminals. Indeed, Steiner trees can be approximated
by minimum spanning trees. Such a spanning tree only uses edges between the nodes in the

Algorithms and Uncertainty, Summer 2020 Lecture 6 (page 2 of 5)

Figure 1: The idea of the proof of Lemma 6.2: Traverse the Steiner tree, then leave out Steiner
vertices (white) and duplicate vertices.

set {r} UT and no edges to other vertices (called Steiner vertices). Let MST(T') C E be
the minimum spanning tree on G|y and let Steiner(T)) C E be the optimal Steiner tree
connecting {r} UT.

Lemma 6.2. A minimum spanning tree on G| {riur 1S a 2-approximation for the min-cost
Steiner tree on {r} UT, formally

w(MST(T)) < 2 - w(Steiner(7T))

Proof. The idea is as follows: Traverse the optimal Steiner tree in a depth-first-search manner.
You cross each edge twice: Once when entering the subtree and once when exiting it again.
Equivalently, you can double each edge in the tree and consider an Euler tour through these
duplicated tree edges. As each edge is crossed twice, the sum of edge costs on this run is
2 - w(Steiner(T)).

We get a sequence of vertices that contains r and each terminal from 7' at least once.
Consider the path that shortcuts this sequence by only visiting r and the vertices in T' exactly
once. By triangle inequality, this path can only be shorter, so the sum of edge costs is at most
2 - w(Steiner(T")).

This path is a spanning tree of G |{r}uT- The minimum spanning tree has at most its cost. [

Note that this bound is tight. Consider the following graph construction. The filled vertices
are terminals. The solid edges have weight 1, the dashed ones weight 2.

k terminals

one other vertex

The minimum spanning tree will only used the dashed edges and therefore have a cost of 2(k—1)
whereas the optimal Steiner tree will use the solid edges and have a cost of k.

3 Greedy Algorithm for Online Steiner Tree

Our algorithm for Online Steiner Tree is the greedy algorithm that always connects an arriving
terminal to the existing Steiner Tree via the cheapest edge. More formally: Initialize S = (.
When t; arrives, let e; be the cheapest edge between t; and one of the vertices r,t1,...,%_1.
Add e; to S.

Algorithms and Uncertainty, Summer 2020 Lecture 6 (page 3 of 5)

Theorem 6.3. Greedy is O(log k)-competitive.

For every terminal ¢; there is a connection cost w(e;), which is the cost increase in the i-th
step. To prove the theorem, we will use the following lemma, which shows that not all of the
connection costs that we see can be very high.

Lemma 6.4. The j-th highest connection cost among w(ey), ..., w(ex) is at most w(MST(T))

Proof. Let T; C T be the set of terminals of size j for which the connection cost is highest. Our
claim is now that min;er; w(e;) < w

Consider MST(7}), that is, the minimum spanning tree on the graph induced by {r} U Tj.
Because of the triangle inequality, this tree can only be cheaper than MST(T).

Furthermore, MST(T}) contains exactly j edges. Therefore

min ~ w(e) <
eEMST(Tj) J

e€MST(Tj)

S|

Let e be the cheapest edge in MST(7}). Defining to = r, we can write e = {t4, %} for a < b.
At the time t; arrives, t, is already a part of the Steiner tree. That is, ¢, could be connected via
edge e. The Greedy algorithm chooses the cheapest way to connect ¢;,. Therefore, w(ep) < w(e).
So, overall,

. V< o) < wfe) < WOIST(T)) _ w(MST(T))
?el%}w(ez)é (en) S w(e) < ; < ; :

O]

Proof of Theorem 6.3. Because of Lemma 6.4, we can rewrite and bound the cost of the algo-

rithm as
k k

k
> wle) <> wMST(T)) _ w(MST(T)) Zl .
=1

=1 J =17

Note that 25:1 % is the k-th harmonic number. We can, for example, bound it by

k1
/ —dr=1+1Ink .
X

R

So, the theorem now follows by Lemma 6.2. O

1
]

4 A Probabilistic Input Model

The competitive ratio of O(logk) is optimal for Online Steiner Tree. We skip the proof here.
Instead, we will see how we can capture and use some prior information.

We assume that ¢1,...,%; are random variables. They are drawn i.i.d. from a probability
distribution, which is known to the algorithm in advance. That is, we have a vector of proba-
bilities (py)vey, where p, denotes the probability that v arrives as a terminal in any step. We
also assume that k is known.

We consider the following GREEDY WITHSAMPLE algorithm. Draw ¢7,...¢, from the proba-
bility distribution. Let 7" = {t}, ...t} }. Initialize S = MST(T"). Now, like in the Greedy Algo-
rithm, connect arriving new terminals to the current Steiner tree with the cheapest edge. That is,
when ¢; arrives, let e; be the cheapest edge between t; and one of the vertices r, ¢}, ..., ¢}, t1,...,ti—1.
Add e; to S.

Algorithms and Uncertainty, Summer 2020 Lecture 6 (page 4 of 5)

As we draw with replacement from our distribution, it may happen that a terminal appears
multiple times in the sequence. In such a second or later appearance, we set e; = {t;} with
weight 0.

For this algorithm, we get a similar guarantee as in competitive analysis but now taken in
expectation over all possible inputs from the distribution and not point-wise for every possible
sequence.

Theorem 6.5. For the final set S of edges chosen by GREEDY WITHSAMPLE, we have E [w(S)] <
4 - E [w(Steiner(T)].

Proof. Our algorithm’s cost consists of two components: The cost of MST(7”) and then the
cost of ey, ..., eg.

Observe that T'and 7" are identically distributed. Therefore E [w(MST(T"))] = E [w(MST(T))].

Next, we would like to bound E [w(e;)]. We consider MST({t},...t}._,,t;}) and let €, be
defined as follows. If t; is different from ¢},...¢,_,, let e} be the edge connecting ¢; towards
the root in this tree. Otherwise, let €, = {t;}. As €, would be a possible choice for e;, we have
w(e;) < w(e)) and it suffices to bound E [w(e})]. To this end, we determine {t},...%,_,,t;} in a
different way. We first draw k times from the distribution, let the outcome be a multiset called
U. Then draw one vertex from U uniformly at random and call it ¢;. The remaining vertices
are called ¢7,...t}_,.

Note that MST({¢},...t}._;,ti}) = MST(U) does not depend on which vertex in U is ;.
Consider an edge {u1,u2} € MST(U), where us is closer to the root. This edge becomes €] only
if u; appears only once in U and u; is drawn to be ¢;. So Pr [e] = {uj,us} | U] < % because t;
is drawn uniformly from U.

So, we have

1 1
Elwe)|U]< > cwuw,ua}) = Lw(MST(U))
{u1,u2}eMST(U)
for any choice of U. Taking the expectation over U, we get
E [w(e))] = ZPr [U is drawn] E [w(e}) | U] < ZPI‘ [U is drawn] %w(MST(U)) = %E [w(MST(U))]
U U

Combining all of these, we have

E [w(e;)] < -E [w(MST({t’l, .. .t%,l,ti}))]
Finally, observe that {t{,...t,_,,t;} is nothing but a set of k independently drawn ter-

minals from the distribution. That is, it is distributed just the same way as T. Therefore
E [w(MST({#},...t,_;,t:}))] = E [w(MST(T)]. So, we have

[

B [w(ei)] < 1B [w(MST(T)]

Overall, we get

k k
E |w(MST(T") + Y w(e;)| = B [w(MST(I"))] + > E[w(e;)] < 2E [w(MST(T)] .
=1 =1

The theorem now follows by Lemma 6.2. O

Algorithms and Uncertainty, Summer 2020 Lecture 6 (page 5 of 5)

Reference

e Naveen Garg, Anupam Gupta, Stefano Leonardi, Piotr Sankowski: Stochastic analyses
for online combinatorial optimization problems. SODA 2008 (Source of results from Sec-
tion 4).

