
Algorithms and Uncertainty, Summer 2020 Lecture 5 (4 pages)

Yao’s Principle

Thomas Kesselheim Last Update: May 4, 2020

In the last weeks, we have often seen that randomized algorithms admit better competitive
ratios than any deterministic one. We could lower-bound the performance of a deterministic
algorithm by using the perspective of an adversary that tried to make our algorithm look as
badly as possible. Today, we will turn our attention to lower bounds and randomized (online)
algorithms.

1 Yao’s Principle

Yao’s principle is a very simple, yet powerful tool to prove impossibility results regarding worst-
case performance of randomized algorithms, which are not necessarily online. We state it for
algorithms that always do something correct but the profit or cost may vary. Such algorithms
are called Las Vegas algorithms. We first state it for minimization problems because this is the
usual way.

We assume that we have a class of deterministic algorithms A and a class of instances X . In
order to avoid technicalities, assume that both classes are finite. Algorithm a ∈ A on instance
x ∈ X incurs cost c(a, x) ∈ R. A randomized algorithm is simply a probability distribution over
the set of deterministic algorithms A. So, let A be a randomized algorithm (which is now a
random variable), then A’s worst-case cost is maxx∈X E [c(A, x)].

Theorem 5.1 (Yao’s Principle). Let A be a random variable with values in A and let X be a
random variable with values in X . Then,

max
x∈X

E [c(A, x)] ≥ min
a∈A

E [c(a,X)] .

Before proving the theorem, let us interpret what it means. The left-hand side of the in-
equality is what will will try to lower-bound: It is the worst-case performance of randomized
algorithm A. The right-hand side will be easier to talk about, because algorithms are deter-
ministic. This is a sort of average-case performance of the best deterministic algorithm in our
class. The distribution over instances is arbitrary.

Proof. Let us first write the expectations as sums over all possible outcomes of X and A.

E [c(A, x)] =
∑
a∈A

Pr [A = a] c(a, x) and E [c(a,X)] =
∑
x∈X

Pr [X = x] c(a, x)

Now we use that the weighted average of a sequence is always upper-bounded by its maximum
value. In our case, the weights are Pr [X = x]. As

∑
x∈X Pr [X = x] = 1, we have

max
x∈X

E [c(A, x)] = max
x∈X

∑
a∈A

Pr [A = a] c(a, x) ≥
∑
x∈X

Pr [X = x]
∑
a∈A

Pr [A = a] c(a, x) .

We can now reorder the sums and get∑
x∈X

Pr [X = x]
∑
a∈A

Pr [A = a] c(a, x) =
∑
a∈A

Pr [A = a]
∑
x∈X

Pr [X = x] c(a, x) .

Finally, we can use that
∑

a∈APr [A = a] = 1 the same way as above to obtain∑
a∈A

Pr [A = a]
∑
x∈X

Pr [X = x] c(a, x) ≥ min
a∈A

∑
x∈X

Pr [X = x] c(a, x) = min
a∈A

E [c(a,X)] .



Algorithms and Uncertainty, Summer 2020 Lecture 5 (page 2 of 4)

Figure 1: The binary tree used in the construction of the lower bound. The black nodes
correspond to a potential sequence.

The analogous statement holds for maximization problems, where we have a profit p(a, x)
that algorithm a achieves on instance x. By setting c(a, x) = −p(a, x), we get the following
corollary.

Corollary 5.2. . Let A be a random variable with values in A and let X be a random variable
with values in X . Then,

min
x∈X

E [p(A, x)] ≤ max
a∈A

E [p(a,X)] .

2 Randomized Lower Bound for Online Set Cover

We will now use Yao’s principle to show that indeed for online Set Cover even randomized
algorithms cannot be strictly o(log n)-competitive.

Theorem 5.3. No algorithm for Online Set Cover is strictly α-competitive for α < 1+ 1
2 log2 n.

Proof. We consider n that are powers of two. Define the set system as follows. Take a complete
binary tree of 2n− 1 vertices. This tree has height h = log2 n+ 1 and n leaves.

Potential elements e to be covered correspond to nodes in the tree. Only some of these
potential elements will be present in our universe U of elements which have to be covered. The
set U corresponds to the elements on one root-leaf path.

The sets S ∈ S correspond to leaves of the tree, where S contains all ancestors in the tree
that are in U . We set cS = 1 for all S ∈ S.

Our sequence σ reveals the set U , starting from the root and going downward. Note that
any such σ can be covered by a single set S ∈ S, namely the one that corresponds to the leaf
where the path ends. That is, cost(OPT(σ)) = 1.

However, the algorithm initially cannot distinguish the n different sets in S because we only
get to know what sets an element is contained in when it arrives. So, initially, we see only n
placeholders in S. Then the root arrives, which in contained in all of these sets. The second
node on the path arrives, which is only contained in half of the sets and so on. Only in the very
last step, we will known which set would have covered all of U .

We now claim that for any randomized online algorithm E [cost(ALG(σ))] ≥ 1 + 1
2 log2 n for

some sequence σ of this form. In the notation of Yao’s principle, this means that maxx∈X E [c(A, x)] ≥
1 + 1

2 log2 n, where now A is an arbitrary randomized algorithm and X is the set of sequences
we are considering.



Algorithms and Uncertainty, Summer 2020 Lecture 5 (page 3 of 4)

Yao’s principle tells us that maxx∈X E [c(A, x)] ≥ mina∈AE [c(a,X)] for any choice of the
random variable X, so it is sufficient to show how to choose X such that mina∈AE [c(a,X)] ≥
1 + 1

2 log2 n.
In our case, we will drawn one leaf uniformly at random and take the path ending at this

leaf. Equivalently, we can determine this leaf as follows: Start at the root and flip a coin whether
to go left or right. At every inner node continue this procedure. Note that this is exactly the
way the online algorithm gets to the path. It always only gets to know whether the following
elements are in the left or the right subtree. The elements to further distinguish the leafs have
not yet arrived.

Without loss of generality, consider a lazy (deterministic) algorithm. This means that the
algorithm only buys an S ∈ S if the current element is not yet covered. If so, it buys only a
single one. In principle, an algorithm may buy multiple sets at a time but it is easy to see that
this cannot be cheaper.

Let Ct be the cost of the algorithm in the t-th step. Clearly C1 = 1. Now consider any later
step t > 1. We will show that E [Ct] = 1

2 . To this end, observe that the algorithm has chosen
exactly one set that covers the element appearing in step t − 1. This can either belong to the
left or to the right subtree. If the element in step t comes from this subtree, the algorithm
does not choose another set and does not incur any cost. If the element comes from a different
subtree, then the algorithm chooses a new set and incurs cost of 1. Both events happen with
probability 1

2 , so E [Ct] = 1
2 .

Overall, we get for any a ∈ A

E [c(a,X)] =
h∑

t=1

E [Ct] = 1 + (h− 1)
1

2
= 1 +

1

2
log2 n .

3 Randomized Lower Bound for Ski Rental

We now consider the Ski Rental Problem. We will show that no randomized algorithm can

be better than
(

1−
(
1− 1

B

)B)−1
-competitive. Note that this matches the guarantee of the

randomized algorithm that we derived from the fractional primal-dual one.

Theorem 5.4. For a fixed B, no algorithm for Ski Rental is α-competitive for α <
(

1−
(
1− 1

B

)B)−1
.

Also note that limB→∞

(
1−

(
1− 1

B

)B)−1
= e

e−1 ≈ 1.58.

Proof. The instances have a very simple structure, they are simple non-negative integers repre-
senting the number of skiing days. For the offline optimum OPT, we now have

c(OPT, x) =

{
x if x < B

B otherwise

For any random variable X, this implies

E [c(OPT, X)] =
B−1∑
t=1

tPr [X = t] +BPr [X ≥ B] =
B∑
t=1

Pr [X ≥ t] .

Deterministic algorithms are also easy to describe. They only differ in how long they wait
until buying the skis. So a is again a non-negative integer, which means that the algorithm



Algorithms and Uncertainty, Summer 2020 Lecture 5 (page 4 of 4)

rents skis for a days before buying them on day a+ 1 (if this day exists). The cost of a is

c(a, x) =

{
x if x ≤ a
a+B otherwise

So, the expected cost for a random X is

E [c(a,X)] =

a∑
t=1

tPr [X = t] + (a+B)Pr [X > a] =

a∑
t=1

Pr [X ≥ t] +BPr [X > a] .

Now, we have to find a distribution such that all deterministic algorithms a perform badly.
The idea is to make all algorithms incur the same cost in expectation. This means that algo-
rithms a and a− 1 have the same cost

E [c(a− 1, X)] = E [c(a,X)] ,

which means that

a−1∑
t=1

Pr [X ≥ t] +BPr [X > a− 1] =
a−1∑
t=1

Pr [X ≥ t] + Pr [X ≥ a] +BPr [X > a] .

So we need

BPr [X ≥ a] = Pr [X ≥ a]+BPr [X ≥ a+ 1] ⇔ Pr [X ≥ a+ 1] =

(
1− 1

B

)
Pr [X ≥ a] .

This is fulfilled if we set

Pr [X ≥ t] =

(
1− 1

B

)t−1
for all t ≥ 1 .

For this choice of X, we have

E [c(OPT, X)] =

B∑
t=1

(
1− 1

B

)t−1
= B

(
1−

(
1− 1

B

)B
)

,

whereas for all a

E [c(a,X)] =
a∑

t=1

(
1− 1

B

)t−1
+B

(
1− 1

B

)a

= B .

Now suppose a randomized algorithm A is α-competitive for α <
(

1−
(
1− 1

B

)B)−1
. Then this

means that
E [c(A,X)] ≤ αE [c(OPT, X)] .

As we know E [c(A,X)] =
∑

a∈APr [A = a]E [c(a,X)] = B and E [c(OPT, X)] = B·
(

1−
(
1− 1

B

)B)
.

This is a contradiction.

References

• Andrew Chi-Chih Yao: Probabilistic Computations: Toward a Unified Measure of Com-
plexity (Extended Abstract). FOCS 1977 (original paper introducing Yao’s principle)

• I currently do not have references for the two lower-bound proofs.


