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So far, we have seen an algorithmic approach to solve the fractional version of Online Set
Cover. That is, we are presented the LP

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

one constraint at a time. Whenever we see a constraint, we have to increase the variables to
ensure it is fulfilled.

So far, the variables could take fractional values. By design, these values never exceed 1. In
this lecture, we will see how the fractional solutions can be turned into integral ones. We will
do this in a randomized way by interpreting fractional values as probabilities.

1 Ski Rental

Our first result is again for the ski-rental problem. Recall that we derived a primal-dual algorithm
for the fractional problem, which is given by the following LP.

minimize Bxbuy +
∑
t

xrent,t

subject to xbuy + xrent,t ≥ 1 for all t

xbuy, xrent,t ≥ 0 for all t

Our algorithm is deterministic and e
e−1 -competitive. Our goal now is to turn this algorithm

into a randomized algorithm for the integral problem. To this end, we will interpret the fractions
as probabilities. For example, for B = 3, our algorithm would set xbuy = 4

19 on the first day,
xbuy = 10

19 on the second day, and xbuy = 1 on the third day. This translates to a randomized
algorithm that buys skis with probability 4

19 on the first day, 10
19 within the first two days, and

1 within the first three days.
The easiest way to formalize this is as follows. We draw θ uniformly at random from [0, 1]

beforehand, buy the skis as soon as x
(t)
buy ≥ θ, and rent them before. Interestingly, this approach

works for any deterministic algorithm for the fractional problem.

Theorem 4.1. Given an α-competitive algorithm for the fractional relaxation of Ski Rental,
the above algorithm is a randomized α-competitive algorithm for Ski Rental.

Proof. Let Zbuy be the random variable indicating the cost of buying skis within the first m

steps. We do so with probability x
(m)
buy. The expected cost from buying in the first m steps is

E [Zbuy] = B · x(m)
buy.

Let Zrent,t be the random variable indicating the cost of renting skis in the t-th step. We rent

skis with probability 1 − x(t)buy. Note that x
(t)
buy + x

(t)
rent,t ≥ 1 because this is the new constraint
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that has to be fulfilled. In other words, we rent skis with probability at most x
(t)
rent,t. So,

E [Zrent,t] ≤ x(t)rent,t ≤ x
(m)
rent,t.

Overall, our expected cost is

E

[
Zbuy +

m∑
t=1

Zrent,t

]
≤ B · x(m)

buy +

m∑
t=1

x
(m)
rent,t ≤ α

(
B · x∗buy +

m∑
t=1

x∗rent,t

)
≤ α · cost(OPT(σ)) ,

where x∗ is an optimal fractional offline solution.

2 Rounding Fractional Solutions for Set Cover

Our algorithm for general Set Cover is a little more complicated but follows the same principle.
A priori, we choose for each S ∈ S a threshold θS uniformly at random from [0, 1].

Upon arrival of an element e, update (x
(t)
S )S∈S according to the fractional algorithm.

(a) Pick all sets S, for which x
(t)
S ≥

1
2 ln tθS .

(b) If e is still uncovered, choose one set S from the probability distribution defined by

(x
(t)
S )S:e∈S and pick it. Note that this is possible since

∑
S:e∈S x

(t)
S ≥ 1.

Theorem 4.2. Using an α-competitive algorithm for the fractional problem, the algorithm for
the integral problem is O(α · logm)-competitive.

Lemma 4.3. The probability that part (b) is executed in the t-th step is at most 1
t2

.

Proof. Let X
(t)
S = 1 if set S has been picked until round t because of case (a), that is, x

(t)
S ≥

1
2 ln tθS , otherwise set X

(t)
S = 0.

By design, if (2 ln t)x
(t)
S ≤ 1,

Pr
[
X

(t)
S = 1

]
= Pr

[
x
(t)
S ≥

1

2 ln t
θS

]
= Pr

[
θS ≤ (2 ln t)x

(t)
S

]
= (2 ln t)x

(t)
S .

As 1− q ≤ exp(−q) for q ∈ [0, 1], this implies

Pr
[
X

(t)
S = 0

]
= 1− (2 ln t)x

(t)
S ≤ exp(−(2 ln t)x

(t)
S ) .

If (2 ln t)x
(t)
S > 1, then Pr

[
X

(t)
S = 0

]
= 0, so this bound holds as well.

Note that these choices are independent, so

Pr

[ ∧
S:e∈S

X
(t)
S = 0

]
=
∏
S:e∈S

Pr
[
X

(t)
S = 0

]
≤
∏
S:e∈S

exp(−(2 ln t)x
(t)
S ) = exp

(
−(2 ln t)

∑
S:e∈S

x
(t)
S

)
≤ 1

t2
.

Lemma 4.4. The expected cost due to set S within the first m rounds is at most (
∑m

t=1
1
t2

+

2 lnm)cSx
(m)
S .
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Proof. Let Xt,S = 1 if set S is chosen in part (b) statement of step t. Note that we have

E [Xt,S ] ≤ 1
t2
· x(t)S ≤

1
t2
· x(m)

S .
The expected cost due to set S within the first m rounds is

E

[
m∑
t=1

cSXt,S + cSX
(m)
S

]
=

m∑
t=1

cSE [Xt,S ] + cSE
[
X

(m)
S

]
≤ cS

m∑
t=1

1

t2
x
(m)
S + cS(2 lnm)x

(m)
S .

Proof of Theorem 4.2. We consider the outcome after m rounds. Let x∗ be an optimal of-
fline fractional solution to the LP relaxation. As the fractional algorithm is α-competitive,

we have
∑

S∈S cSx
(m)
S ≤ α ·

∑
S∈S cSx

∗
S . Furthermore, by Lemma 4.4, E [cost(ALG(σ))] ≤∑

S∈S
(∑m

t=1
1
t2

+ 2 lnm
)
cSx

(m)
S .

Note that
∑∞

t=1
1
t2

= π2

6 . So overall, E [cost(ALG(σ))] ≤ α ·
(
π2

6 + 2 lnm
)∑

S∈S cSx
∗
S =

α ·
(
π2

6 + 2 lnm
)

cost(OPT(σ)).

3 Extensions

The primal-dual framework for Online Set Cover can be extended in various ways, some of
which we will highlight here.

3.1 Arbitrary Covering Constraints

It is pretty straightforward to extend the approach to arbitrary covering constraints. That is,
we have a covering LP of the form

minimize
∑
j

cjxj

subject to
∑
j

ai,jxj ≥ 1 for all i

xj ≥ 0 for all j

where all cj and ai,j are non-negative reals.

3.2 Packing LPs

We can also consider packing problem, which are given by the following kind of linear program.

maximize
∑
i

yi

subject to
∑
i

ai,jyi ≤ cj for all j

yi ≥ 0 for all i

Now, we know all constraints in advance. In each step a variable appears and we have to decide
on its value. Note that this is exactly what we already did with the dual in the covering problem.
As it turns out, slight adaptations of our Set Cover algorithm give us an O(log n)-competitive
algorithm for the fractional problem with n packing constraints if ai,j ∈ {0, 1}. If each variable
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appears in at most f constraints, this can be improved to O(log f) because this corresponds to
the frequency of the set system of the Set Cover instance.

One particular application is the following. We are given a directed graph G = (V,E), in
which each edge e ∈ E has a capacity ce. Now, we are presented pairs of a source node sk ∈ V
and a sink node tk ∈ V one after the other. For each of these pairs (sk, tk), we have to find
a path connecting sk and tk or we can reject it. The number of paths using edge e may not
exceed ce. The goal is to connect as many source-sink pairs as possible.

Example 4.5. Consider the following graph, all capacities are 1.

1

2

3

4

5

6

In advance, we do not know which pairs of vertices should be connected. If the first request
is to connect vertices 2 and 5, we may either choose the top or the bottom path or reject the
request. Suppose we choose the top path. If then the second request is to connect vertices 1 and
4, we have to reject the request because there is no more capacity left. So, we served only one
request whereas the offline optimum can serve both.

The fractional relaxation of the problem looks as follows. We have variables fk,P denoting
the flow routed along path P for every path connecting sk and tk.

maximize
∑
k

∑
P

fk,P

subject to
∑

k,P :e∈P
fk,P ≤ ce for all e ∈ E (capacity constraints of edges)

∑
P

fk,P ≤ 1 for all k (only one unit of flow between any sk and tk)

fk,P ≥ 0 for all k, P

To design an algorithm for the fractional problem, when we see a pair (sk, tk) we add all
variables fk,P for paths connecting sk to tk to the LP one after the other and run an algorithm
for packing LPs.

Note that in this case the number of constraints n corresponds to the number of edges plus
the number of rounds. However, this LP is sparse in the following sense: Let d be the maximum
length of a path. Then each variable appears in at most d + 1 constraints. Therefore, there is
an O(log d)-competitive algorithm for the fractional problem.

For more details and many other applications, see the survey by Buchbinder and Naor.
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