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Last time, we introduced the online set cover problem and its fractional relaxation. Today,
we will consider only the relaxed problem and devise online algorithms. So, our goal is to solve
the following kind of linear program online.

minimize g cSxS

SeSs

subject to Z rg > 1 forallec U
S:eeS
x5 >0 forall Se S

We have to maintain a feasible solution = to the linear inequalities. In the t-th step, the ¢-th
element arrives and therefore we get to know the ¢-th constraint. Possibly, the solution 2~ we
had so far is infeasible now. In this case, we may only increase variables to get to the solution
2 which is feasible again.

Recall the dual of the set cover LP

maximize Z Ye
ecU

subject tOZye <cg forall S € S
eesS
Ye > 0 forallee U

We will use a primal-dual algorithm. That is, besides maintaining a primal solution z, we will
also maintain a dual solution y. In step t, variable y; is added to the dual LP and we can only
set its value. We will make use of the following lemma.

Lemma 3.1. If
(a) in every step t the primal increase is bounded by [ times the dual increase, that is
p) _ pt-1) < By: , where P — Z csmg)
Ses
and,
(b) %y is dual feasible,
then the algorithm is [By-competitive.

1 Fractional Ski Rental

To understand the design principle of primal-dual online algorithms, we will consider the frac-
tional variant of Ski Rental first. Recall the LP relaxation

minimize BT,y + Z Trent,t
t
subject to Thuy + Trent,t > 1 for all ¢

Thuys Lrent,t >0 for all ¢
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and its dual

maximize g i
t

subject to Zyt <B
t

yr <1 for all ¢
Yy >0 for all ¢
Note that the optimal dual solution is always toset y; = ... =yp=1and ypy1 = ... =

Ym = 0. Our primal-dual algorithm will use exactly this dual solution. So, in Lemma 3.1,
Property (b) holds with v = 1. We now have to figure out how to update the primal solution
so as to keep (B as small as possible.

The dual does not increase in steps t > B. Therefore, to maintain Property (a), we may
not increase the primal objective in these steps.

In step ¢t < B, we increase xp,y some way. We have to set Zient,¢ to fill the gap between 1,y
and 1. So,

t t
wﬁﬂy + xﬁelu =1.

At the same time, the increase of the primal objective function has to be bounded by 5 -y; = B.
That is © ) ©
t t—1 t
B(l‘buy - ﬂgbuy ) + xrent,t = 5 :
In combination, these two equalities give us

t t—1
(B—1)af — Bape V' =p-1,

or equivalently

w _B=1 B @1
I R

This recursion solves to

t—1 v a0 1— %t B t
LB () 5 - oo (%) )

t'=0

(B)

Recall that Ty

to have

= 1 because we may not increase primal variables after step B. So, we have

(ﬁ—l)((f_l)B—1> —1,
(- 08))

-1 B
Note that (1 — (1 — %)B> < (1 — %) ' 1.58, so the algorithm is 1.58-competitive.

which is equivalent to
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Thuy

Figure 1: Increase of xy,y over time for B = 10.

2 Approach for Fractional Online Set Cover

Now, we turn to the more general Fractional Online Set Cover Problem. When choosing z(*)
and 1, our primary goal is that they have similar objective-function values so that Property
(a) in Lemma 3.1 holds with a small 3.

So, let us figure out what we would like to do. Suppose we are in step t. That is, element
t arrives and we observe a new constraint ) 4. ,cg s > 1 in the primal LP. In the dual, a new

t—1)

variable y; arrives. Our current solution is 21 Tt fulfills all constraints except maybe the

new one. If also ) g. ,cq :L‘g_l) > 1, there is nothing to do because we can keep the old solution
as the new one by setting z®) = (=1 4y, — 0.
(t=1)

In the case ) g.,cg%g ~ < 1, we will have to increase some variables to get a feasible z®),

t=1)  We reflect this additional cost in the value

Of course, z(Y) will be more expensive than
of v, all other dual variables remain unchanged.

Let us slowly increase z starting from z(~1 and simultaneously y; starting from 0. We do
this in infinitesimal steps over continuous time.

We are at any point in time for which still } ¢.,.g2s < 1. We increase xg by dxg. To
account for the increased cost, we increase y; by dy at the same time. The dual objective
function increases by dy this way. This is at least (D g.,;.qZs)dy because ) ¢.,.qzs < 1.
Simultaneously, the primal objective function increases by ) ¢.,.gcsdrs. If we set drg =

("z—:)dy for all S for which ¢ € S, then these changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from 20 =0,
so all increases would be 0. Therefore, let n > 0 be very small and set

1
(xs +n)dy .

drs = —
Cs

This is a differential equation. We try a solution of the form zg = C1e“?¥ + C5. Then we

have % = COy(xg — C3), 80 C3 = —n, C1 = a:(;_l) +n, Cy = é This way

1 —
2y 4 =es” (a0 4n)

where y; is the smallest value such that z(® is a feasible solution to the first ¢ constraints of the
primal LP.

3 Algorithm

Let us now use the algorithmic approach above to design an algorithm for fractional online set
cover.
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For our algorithm, we set n = % and initialize all xg = 0. In the ¢t-th step, when element ¢
arrives, we introduce the primal constraint ) g, q#s > 1 and a dual variable y;. We initialize

y: = 0 and update it as follows. For each S with t € S increase g from 9:(5571) to 9:(;) by
:1:(;) n—eCS ( fgt D—i—n) ;
where y; is the smallest value such that z(®) is a feasible solution.
Theorem 3.2. The algorithm is O(logn)-competitive for fractional online set cover.
Proof. We will verify the conditions of Lemma 3.1 with 8 =2 and v = In(n + 1).
We start by property (a). Consider the t-th step; element ¢ arrives in this step. We have to
relate P*) — pU=1) = S~ cs(a:(t) - a:(;_l)) to y;. For every set S such that ¢ € S, we have

a:g)—i—n—ecs ( g 1)+77) ;

and therefore
:pgfl) +n= oY (mg) + 7]>

This lets us write the increase of xg as follows

:Ug’) — xg_l) = (xg’) + 77) efcsy (x(;) + 77) = (1 — eféyt> <$g) + 77) < ;9 (xg) + 77) Yt

This way, we can bound the primal increase by

pW — plt=1 < 7( ) <2
ZCSCS et n)ue= 3" 2P+ > <2,
S:tesS S:teS S:teS

because ) g.,cq xg) = 1 (otherwise we would have increased variables by too much) and
D sies < np = 1.

Now, we turn to property (b). Consider a fixed S € S. We will verify that the dual constraint
for set S is fulfilled. By our algorithm if £ € S then

Yi —csln(xg)—i-n)—c In(xg (¢ 1)—1-7]) ,

otherwise xg) = Jig Y and so cs ln($g) +n) —cs ln(ajg_ )
This lets us write the sum ), g s as

. (m)
_ 0 (--1) - Ts T
> =3 (et ) —eomiel ™ 40) st (252 )

tesS t=1

+n) =0.

0 . .
Furthermore, xg) > 0 because variables are never negative and xgm

make sense to increase variables beyond 1. So

Zyt<051n( >:csln(n+1):’ycS.

t:tesS

) < 1 because it does not
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