
Algorithms and Uncertainty, Summer 2020 Lecture 3 (4 pages)

Online Set Cover: Fractional Algorithm

Thomas Kesselheim Last Update: April 28, 2020

Last time, we introduced the online set cover problem and its fractional relaxation. Today,
we will consider only the relaxed problem and devise online algorithms. So, our goal is to solve
the following kind of linear program online.

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

We have to maintain a feasible solution x to the linear inequalities. In the t-th step, the t-th
element arrives and therefore we get to know the t-th constraint. Possibly, the solution x(t−1) we
had so far is infeasible now. In this case, we may only increase variables to get to the solution
x(t), which is feasible again.

Recall the dual of the set cover LP

maximize
∑
e∈U

ye

subject to
∑
e∈S

ye ≤ cS for all S ∈ S

ye ≥ 0 for all e ∈ U

We will use a primal-dual algorithm. That is, besides maintaining a primal solution x, we will
also maintain a dual solution y. In step t, variable yt is added to the dual LP and we can only
set its value. We will make use of the following lemma.

Lemma 3.1. If

(a) in every step t the primal increase is bounded by β times the dual increase, that is

P (t) − P (t−1) ≤ βyt , where P (t) =
∑
S∈S

cSx
(t)
S

and,

(b) 1
γ y is dual feasible,

then the algorithm is βγ-competitive.

1 Fractional Ski Rental

To understand the design principle of primal-dual online algorithms, we will consider the frac-
tional variant of Ski Rental first. Recall the LP relaxation

minimize Bxbuy +
∑
t

xrent,t

subject to xbuy + xrent,t ≥ 1 for all t

xbuy, xrent,t ≥ 0 for all t



Algorithms and Uncertainty, Summer 2020 Lecture 3 (page 2 of 4)

and its dual

maximize
∑
t

yt

subject to
∑
t

yt ≤ B

yt ≤ 1 for all t

yt ≥ 0 for all t

Note that the optimal dual solution is always to set y1 = . . . = yB = 1 and yB+1 = . . . =
ym = 0. Our primal-dual algorithm will use exactly this dual solution. So, in Lemma 3.1,
Property (b) holds with γ = 1. We now have to figure out how to update the primal solution
so as to keep β as small as possible.

The dual does not increase in steps t > B. Therefore, to maintain Property (a), we may
not increase the primal objective in these steps.

In step t ≤ B, we increase xbuy some way. We have to set xrent,t to fill the gap between xbuy
and 1. So,

x
(t)
buy + x

(t)
rent,t = 1 .

At the same time, the increase of the primal objective function has to be bounded by β ·yt = β.
That is

B(x
(t)
buy − x

(t−1)
buy ) + x

(t)
rent,t = β .

In combination, these two equalities give us

(B − 1)x
(t)
buy −Bx

(t−1)
buy = β − 1 ,

or equivalently

x
(t)
buy =

β − 1

B − 1
+

B

B − 1
x
(t−1)
buy .

This recursion solves to

x
(t)
buy =

t−1∑
t′=0

(
B

B − 1

)t′ β − 1

B − 1
=

1−
(

B
B−1

)t
1−

(
B
B−1

) β − 1

B − 1
= (β − 1)

((
B

B − 1

)t
− 1

)
.

Recall that x
(B)
buy = 1 because we may not increase primal variables after step B. So, we have

to have

(β − 1)

((
B

B − 1

)B
− 1

)
= 1 ,

which is equivalent to

β =

(
1−

(
1− 1

B

)B)−1
.

Note that
(

1−
(
1− 1

B

)B)−1 ≤ (1− 1
e

)−1 ≈ 1.58, so the algorithm is 1.58-competitive.



Algorithms and Uncertainty, Summer 2020 Lecture 3 (page 3 of 4)

t

xbuy

Figure 1: Increase of xbuy over time for B = 10.

2 Approach for Fractional Online Set Cover

Now, we turn to the more general Fractional Online Set Cover Problem. When choosing x(t)

and yt, our primary goal is that they have similar objective-function values so that Property
(a) in Lemma 3.1 holds with a small β.

So, let us figure out what we would like to do. Suppose we are in step t. That is, element
t arrives and we observe a new constraint

∑
S : t∈S xS ≥ 1 in the primal LP. In the dual, a new

variable yt arrives. Our current solution is x(t−1). It fulfills all constraints except maybe the

new one. If also
∑

S : t∈S x
(t−1)
S ≥ 1, there is nothing to do because we can keep the old solution

as the new one by setting x(t) = x(t−1), yt = 0.

In the case
∑

S : t∈S x
(t−1)
S < 1, we will have to increase some variables to get a feasible x(t).

Of course, x(t) will be more expensive than x(t−1). We reflect this additional cost in the value
of yt, all other dual variables remain unchanged.

Let us slowly increase x starting from x(t−1) and simultaneously yt starting from 0. We do
this in infinitesimal steps over continuous time.

We are at any point in time for which still
∑

S : t∈S xS < 1. We increase xS by dxS . To
account for the increased cost, we increase yt by dy at the same time. The dual objective
function increases by dy this way. This is at least (

∑
S : t∈S xS)dy because

∑
S : t∈S xS < 1.

Simultaneously, the primal objective function increases by
∑

S : t∈S cSdxS . If we set dxS =
(xScS )dy for all S for which t ∈ S, then these changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from x(0) = 0,
so all increases would be 0. Therefore, let η > 0 be very small and set

dxS =
1

cS
(xS + η)dy .

This is a differential equation. We try a solution of the form xS = C1e
C2y + C3. Then we

have dxS
dy = C2(xS − C3), so C3 = −η, C1 = x

(t−1)
S + η, C2 = 1

cS
. This way

x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

where yt is the smallest value such that x(t) is a feasible solution to the first t constraints of the
primal LP.

3 Algorithm

Let us now use the algorithmic approach above to design an algorithm for fractional online set
cover.



Algorithms and Uncertainty, Summer 2020 Lecture 3 (page 4 of 4)

For our algorithm, we set η = 1
n and initialize all xS = 0. In the t-th step, when element t

arrives, we introduce the primal constraint
∑

S:t∈S xS ≥ 1 and a dual variable yt. We initialize

yt = 0 and update it as follows. For each S with t ∈ S increase xS from x
(t−1)
S to x

(t)
S by

x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

where yt is the smallest value such that x(t) is a feasible solution.

Theorem 3.2. The algorithm is O(log n)-competitive for fractional online set cover.

Proof. We will verify the conditions of Lemma 3.1 with β = 2 and γ = ln(n+ 1).
We start by property (a). Consider the t-th step; element t arrives in this step. We have to

relate P (t) − P (t−1) =
∑

S cS(x
(t)
S − x

(t−1)
S ) to yt. For every set S such that t ∈ S, we have

x
(t)
S + η = e

1
cS
yt
(
x
(t−1)
S + η

)
,

and therefore
x
(t−1)
S + η = e

− 1
cS
yt
(
x
(t)
S + η

)
.

This lets us write the increase of xS as follows

x
(t)
S − x

(t−1)
S =

(
x
(t)
S + η

)
− e
− 1

cS
yt
(
x
(t)
S + η

)
=
(

1− e
− 1

cS
yt
)(

x
(t)
S + η

)
≤ 1

cS

(
x
(t)
S + η

)
yt .

This way, we can bound the primal increase by

P (t) − P (t−1) ≤
∑
S:t∈S

cS
1

cS

(
x
(t)
S + η

)
yt =

∑
S:t∈S

x
(t)
S yt +

∑
S:t∈S

ηyt ≤ 2yt ,

because
∑

S:t∈S x
(t)
S = 1 (otherwise we would have increased variables by too much) and∑

S:t∈S η ≤ nη = 1.
Now, we turn to property (b). Consider a fixed S ∈ S. We will verify that the dual constraint

for set S is fulfilled. By our algorithm if t ∈ S then

yt = cS ln(x
(t)
S + η)− cS ln(x

(t−1)
S + η) ,

otherwise x
(t)
S = x

(t−1)
S and so cS ln(x

(t)
S + η)− cS ln(x

(t−1)
S + η) = 0.

This lets us write the sum
∑

t∈S yt as∑
t∈S

yt =
m∑
t=1

(
cS ln(x

(t)
S + η)− cS ln(x

(t−1)
S + η)

)
= cS ln

(
x
(m)
S + η

x
(0)
S + η

)
.

Furthermore, x
(0)
S ≥ 0 because variables are never negative and x

(m)
S ≤ 1 because it does not

make sense to increase variables beyond 1. So∑
t:t∈S

yt ≤ cS ln

(
1 + η

η

)
= cS ln(n+ 1) = γcS .

References

• N. Buchbinder, J. Naor: The Design of Competitive Online Algorithms via a Primal-
Dual Approach. Foundations and Trends in Theoretical Computer Science 3(2-3): 93-263
(2009)


