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Today, we will learn about a fundamental technique in the design of online algorithms. As
our motivating example, we consider the set cover problem in its weighted variant. In the offline
version, you are given a universe of m elements U = {1, . . . ,m} and a family of n subsets of
U called S ⊆ 2U . For each S ∈ S, there is a cost cS . Your task is to find a cover C ⊆ S of
minimum cost

∑
S∈C cS . A set C is a cover if for each e ∈ U there is an S ∈ C such that e ∈ S.

Alternatively, you could say
⋃
S∈C S = U .

We assume that each element of U is included in at least one S ∈ S. So in other words S is
a feasible cover. Otherwise, there might not be a feasible solution.

Note that the problem is NP-hard in the offline case, so this already limits our expectations.
We will consider the online version, in which the universe U arrives online, one element at a
time. Whenever an element is revealed, we get to know which sets S ∈ S it is contained in and
have to make sure that it is covered, potentially by adding a set from S to C. We may never
remove sets from C. Our goal is to eventually select sets so as to minimize

∑
S∈C cS .

Example 2.1. A special case is the ski-rental problem. As a simplification, we can assume that
every day is a skiing day but we do not know the overall number of days. We could capture this
by setting S = {{1}, . . . , {m}, {1, . . . ,m}}, so each element can be covered individually (which
means renting the skis for this particular day) or all can be covered simultaneously (which means
buying the skis). The costs are set to c{e} = 1 for all e ∈ U and cU = B.

1 LP Relaxation

We can state the set cover problem as an integer program as follows

minimize
∑
S∈S

cSxS (minimize the overall cost)

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U (cover every element at least once)

xS ∈ {0, 1} for all S ∈ S (every set is either in the set cover or not)

We can relax the problem by exchanging the constraints xS ∈ {0, 1} by 0 ≤ xS ≤ 1. (These are
the only constraints requiring integrality of the solution.) We get the following LP relaxation1

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

Also the online problem has a fractional relaxation: We know the variables and the objective
function in advance. We get to know one constraint at a time and we have to maintain a feasible
solution and we are not allowed to reduce the values of the variables. So the difficulty is that
we do not know what constraints will come later when we choose which variables to increase.

1We could also include that xS ≤ 1 for all S but this will not change the optimal solution as values greater
than 1 do not make sense.
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Example 2.2. Let us come back to the ski rental problem. Its LP relaxation is (for readability
we rename the variables)

minimize Bxbuy +
∑
t

xrent,t

subject to xbuy + xrent,t ≥ 1 for all t

xbuy, xrent,t ≥ 0 for all t

A fractional solution might tell us to buy half the skis and to rent the other half. While this
makes no sense at first sight, we can interpret such values later as probabilities.

Indeed, we will first consider the fractional problem and devise an algorithm for it and then
derive a feasible integral solution from the fractional one.

2 LP Duality

We will use LP duality for our algorithm. It is not necessary to know LP duality in its generality.
What we need to know is that the dual LP gives us a lower bound on all feasible solutions. Let
us start with a simple example.

Example 2.3. Consider U = {1, 2, 3}, S = {{1, 2}, {1, 3}, {2, 3}}, cS = 1 for all S ∈ S.
The optimal set cover solution has cost 2 because we need to take two sets. However, setting
x{1,2} = x{1,3} = x{2,3} = 1

2 for all S ∈ S is a feasible solution to the LP relaxation of cost 3
2 .

There is no cheaper solution than this: From the three constraints, we get that for any feasible
x

x{1,2} + x{1,3} + x{2,3} =
1

2

(
x{1,2} + x{1,3}

)
+

1

2

(
x{1,2} + x{2,3}

)
+

1

2

(
x{1,3} + x{2,3}

)
≥ 3

2
.

The point of LP duality is to find coefficients just as 1
2 ,

1
2 ,

1
2 above to derive such a lower

bound on the LP value. Interestingly, possible choices for such coefficients can again be found
as the solution of a linear program, which is then called the dual LP. The dual of the Set Cover
LP relaxation is

maximize
∑
e∈U

ye

subject to
∑
e∈S

ye ≤ cS for all S ∈ S

ye ≥ 0 for all e ∈ U

As always in LP duality, we get a dual variable for each primal constraint and a dual constraint
for each primal variable. In this case, this means that the dual LP has one variable for each
element and one constraint for each set. A usual interpretation, which is also helpful here, is
that dual variables correspond to “how expensive” it is to cover a certain element.

Lemma 2.4 (Weak Duality). Let x and y be feasible solutions to the primal and dual program
respectively. Then

∑
S∈S cSxS ≥

∑
e∈U ye.

Proof. We have
∑

e∈U ye ≤
∑

e∈U
(∑

S : e∈S xS
)
ye =

∑
S∈S xS

∑
e∈S ye ≤

∑
S∈S xScS .
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Example 2.5. The dual of the ski rental LP is

maximize
∑
t

yt

subject to
∑
t

yt ≤ B

yt ≤ 1 for all t

yt ≥ 0 for all t

So, these constraints tell us that the optimal solution does not spend more than B in total and
not more than 1 per day.

3 Example Algorithm: Ski Rental

Let us understand the notions that we have just defined in the light of ski rental. Consider the
following algorithm. It does (more or less) the same as our initial deterministic algorithm.

• If xbuy < 1

– Increase xbuy by 1
B , xrent,t by 1.

– Set yt = 1.

• Else: Set yt = 0.

• If xbuy = 1, buy the skis (unless already done so), otherwise rent them.

This algorithm already follows the approach that we will use for general Set Cover. The
idea is to maintain (fractional) vectors x and y and to update them in every step. Entries in x
can only be increased; in y only the variable that arrived in this step can be set.

The x vector is not a feasible solution to our actual problem because it is fractional. There-
fore, we still have to derive an integral decision, which in this case is straightforward in the last
step. Note that the cost of actual buying and renting is clearly bounded by Bxbuy +

∑
t xrent,t.

So, it is enough if we only talk about the latter quantity.

Theorem 2.6. Let x∗ be any feasible (possibly fractional) solution to the ski rental LP, let x
be the one computed by the algorithm. Then Bxbuy +

∑
t xrent,t ≤ 2(Bx∗buy +

∑
t x
∗
rent,t).

Proof. Let x(t) be the state of x after the t-th step, x(0) = 0. Observe that B(x
(t)
buy − x

(t−1)
buy ) +∑

t′ x
(t)
rent,t′ ≤ 2yt for all t. So, by a telescoping sum

Bxbuy +
∑
t

xrent,t ≤ 2
∑
t

yt .

Furthermore, observe that y is dual feasible: No individual entry is bigger than 1, the sum
of all entries is no bigger than B. Therefore, by Lemma 2.4, we have

Bx∗buy +
∑
t

x∗rent,t ≥
∑
t

yt .

Combining the two inequalities, the theorem follows.
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4 LP Duality for Online Algorithms

Like the example algorithm for ski rental, our algorithm for Set Cover will use LP duality. We
will not only maintain (feasible) primal solutions x(t) but also (possibly infeasible) dual solutions
y(t). Both start from x(0) = 0 and y(0) = 0. In each step, we will increase the primal and the
dual variables. Furthermore, the primal increase will be bounded by the dual increase as in the
following lemma.

Lemma 2.7. If for all times t

(a) The primal increase is bounded by β times the dual increase, that is

P (t) − P (t−1) ≤ β(D(t) −D(t−1)) , where P (t) =
∑
S∈S

cSx
(t)
S and D(t) =

∑
e∈U

y(t)e

(b) 1
γ y

(t) is dual feasible,

Then the algorithm is βγ-competitive.

Proof. First, observe that by a telescoping-sum argument, we have P (t) =
∑t

t′=1(P
(t′) −

P (t′−1)) ≤ β
∑t

t′=1(D
(t′) −D(t′−1)) = βD(t).

Let x∗ be an optimal offline solution. Then, by weak duality, we know
∑

S∈S cSx
∗
S ≥

∑
e∈U ye

for any dual feasible y, in particular y = 1
γ y

(t). So,
∑

S∈S cSx
∗
S ≥

1
γ

∑
e∈U ye.

Combined with P (t) ≤ βD(t), we get cTx(t) ≤ β · bT y(t) ≤ βγcTx∗. This means exactly that
the online solution x(t) is within an βγ factor of the offline solution x∗.

We have already seen one example to apply this lemma: Our primal-dual algorithm for Ski
Rental fulfills the conditions with β = 2 and γ = 1. Next time, we will see a smarter way to
increase the variables so that β is smaller.
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