
Algorithms and Uncertainty, Summer 2020 Lecture 1 (3 pages)

Ski Rental
Thomas Kesselheim Last Update: April 20, 2020

We will first consider the ski-rental problem. Suppose you stay in a ski resort for T days. You
can either rent skis (cost 1 per day) or buy them (cost B once). Unfortunately, you do not
know which option is cheaper because you do not know the number of days you will go skiing in
advance. Every morning, you get to know if you will go skiing that day. Then, you can choose if
you rent skis for that day or if you buy them, in which case you can use them for the rest of the
stay and do not have to rent or buy them again.

1 A Deterministic Online Algorithm
There is a very simple online algorithm for this problem: Rent skis up to B − 1 times. Buy skis
on the B-th day that you want to go skiing.

Theorem 1.1. For any sequence of “skiing”/“not skiing” days, the described online algorithm’s
cost exceeds the optimal possible cost on this particular sequence by a factor of at most 2− 1

B .

Proof. Let there be k days of skiing in the sequence. If k < B, the optimal possible cost on this
sequence is k by always renting. Our algorithms always rents and pays k as well: It makes the
optimal choice.

If k ≥ B, the optimal choice is to buy the skis on the very first day, resulting in cost of B.
What is our algorithm’s cost? We rent the skis for B − 1 days and buy them once. So we pay
B− 1 +B = 2B− 1. That is, our cost exceeds the optimal cost by a factor of 2B−1

B = 2− 1
B .

2 Online Competitive Analysis
What have we done so far? We have devised an algorithm that only works online and we
compared its performance to what we could have done offline.

In an abstract way, the algorithm operates on an input sequence σ = (σ1, σ2, . . . , σT ). In
the t-th step, request σt arrives and we have to process it only knowing σ1, σ2, . . . , σt but not
σt+1, σt+2, . . . , σT .

We say that a deterministic algorithm for a minimization problem is α-competitive if

c(ALG(σ)) ≤ α · c(OPT(σ)) + b for any sequence σ , (1)

where c(ALG(σ)) denotes the cost that the algorithm incurs on sequence σ and c(OPT(σ))
denotes the cost of the optimal offline solution. That is, it is the cost that one could have
achieved on σ with perfect knowledge and unlimited computational power.

The constant b ≥ 0 is useful to avoid corner cases. If Equation (1) holds with b = 0, then
the algorithm is strictly α-competitive.

Theorem 1.2. There is no deterministic algorithm for Ski Rental that is strictly α-competitive
for α < 2− 1

B .

Proof. We set T = 2B. Consider the sequence σ, in which we go skiing every day. Let ` denote
the number of days that the algorithms rents skis on this sequence, so 0 ≤ ` ≤ T .

We now make a case distinction. The first case is ` = T . In this case, c(ALG(σ)) = ` = T
but c(OPT(σ)) = B. So, we observe that for this particular sequence

c(ALG(σ))
c(OPT(σ)) = 2



Algorithms and Uncertainty, Summer 2020 Lecture 1 (page 2 of 3)

and therefore Condition (1) only holds for α ≥ 2.
The second case is ` < T . That is, on sequence σ, the algorithm rents the skis for the first `

days and buys them on day `+1. Its cost is c(ALG(σ)) = `+B. The algorithm works online, that
is, it makes the exact same decisions regardless of the values σ`+2, . . . , σT . Let σ′ be the sequence
in which we go skiing for the first `+ 1 days and never afterwards. As σ1 = σ′1, . . . , σ`+1 = σ′`+1,
the algorithm does exactly the same in these steps. So c(ALG(σ′)) = ` + B. However,
c(OPT(σ′)) = min{`+ 1, B}.

For this sequence σ′, we have

c(ALG(σ′))
c(OPT(σ′)) = `+B

min{`+ 1, B} ≥ 2− 1
B

,

where the last step follows from a simple case distinction.
Overall, we have shown that for any algorithm, there is a sequence σ such that

c(ALG(σ)) ≥
(

2− 1
B

)
· c(OPT(σ)) ,

which means that Condition (1) cannot hold for any α < 2− 1
B .

It is crucial for this perspective that the algorithm is deterministic. We will now turn to
randomized algorithms.

3 Randomized Online Algorithms
How can we do better? While deterministic algorithms cannot beat 2− 1

B , randomized algorithms
can. First, we have to clarify what this means. If an algorithm is randomized, it may flip coins
to guide its decisions. We assume that the sequence does not adapt to these coin flips. The cost
of an algorithm on a sequence now becomes a random variable. For our benchmark, we use its
expectation.

We say that a randomized algorithm for a minimization problem is α-competitive if

E [c(ALG(σ))] ≤ α · c(OPT(σ)) + b for any sequence σ ,

where σ may not depend on the internal randomness of the algorithm.
To understand the idea, let us consider the following very simple randomized algorithm. We

flip a coin: With probability 1
2 we proceed as before and buy the skis on day B; otherwise (so

also with probability 1
2), we buy the skis already on day 3

4B.

Theorem 1.3. The randomized algorithm for ski rental is strictly 15
8 -competitive.

Proof. We proceed as before. Again, consider an arbitrary sequence σ. We will show that
E [c(ALG(σ))] ≤ 15

8 c(OPT(σ)). To this end, we distinguish three cases regarding the number of
skiing days k in the sequence.

If k < 3
4B, we always rent skis, so E [c(ALG(σ))] = c(OPT(σ)) = k.

If k ≥ B, then c(OPT(σ)) = B. Our algorithm eventually always buys skis. It rents skis
either B − 1 times or only 3

4B − 1 times, depending on the outcome of the random coin flip. So,
E [c(ALG(σ))] = 1

2(B − 1 +B) + 1
2(3

4B − 1 +B) ≤ 15
8 B = 15

8 c(OPT(σ)).
If 3

4B ≤ k < B, we have c(OPT(σ)) = k. With probability 1
2 , the algorithm rents skis all k

times. With probability 1
2 , it rents the skis 3

4B − 1 times and buys them in the following step.
So E [c(ALG(σ))] = 1

2k + 1
2(3

4B − 1 +B) ≤ 1
2k + 1

2(k + 4
3k) = 5

3k ≤
15
8 k = 15

8 c(OPT(σ)).

It is important to remark at this point that this argument only works because the sequence
does not depend on the coin flip; this is where the improvement comes from. Furthermore, this
is clearly not the best randomized algorithm in terms of the competitive ratio. We will see a
much more structured and general approach soon.



Algorithms and Uncertainty, Summer 2020 Lecture 1 (page 3 of 3)

4 Other Models of Uncertainty
Competitive analysis is very robust: We essentially do not make any assumptions regarding the
input sequence. Consequently, our assumptions cannot be wrong. Whatever underlying process
actually generates the sequence, it can always be captured. Every positive guarantee that we
show will hold. However, it is also very pessimistic. It assumes that we do not have any prior
knowledge on the input.

In the ski-rental problem, we motivated the uncertainty by the fact that we do not know in
advance how much we like skiing or what the weather will be like. In either case, we probably
do have some information in advance. After going skiing once or twice, we learn how much we
like it and how often we will probably go again. A weather forecast may not be entirely accurate
but also gives us information to be taken into consideration.

Later in the course, we will see several different examples of such models. Let us assume
that every day in the morning somebody flips a coin. If it shows heads, we want to go skiing,
otherwise we don’t. To be more precise, we assume that σ1, . . . , σT are independent random
variables. For every step t we have σt = 1 with probability q and σt = 0 otherwise. We know q
in advance. Importantly, now the sequence itself is random.

One can now derive the optimal online algorithm. Note that this should not be confused
with the optimal offline solution, which we denoted by OPT(σ). The optimal online algorithm
is defined as follows. For every fixed q, some algorithm ALG∗ minimizes the expected cost
E [c(ALG∗(σ))]. This will be an easy exercise later this semester. The result is as follows: The
optimal algorithm waits for the first t with σt = 1. Then, if T − t+ 1 ≥

⌊
B−1

q + 2
⌋
, it buys the

skis. Otherwise, it rents them throughout the sequence.
So, interestingly, this algorithm does quite the opposite of what was good in competitive

analysis: It never buys the skis after renting them once. The algorithm that does well in
competitive analysis always rents the skis a number of times before buying them.

5 Outlook
We have already seen two models of uncertainty today. On the one hand, there is competitive
analysis, in which one does not know anything about the input in advance. On the other hand,
our stochastic model is an example of a Markov decision process. Here, one knows exactly the
stochastic process that generates the input. We will see more examples of these models as well
as other ones throughout the course.


	A Deterministic Online Algorithm
	Online Competitive Analysis
	Randomized Online Algorithms
	Other Models of Uncertainty
	Outlook

