
Algorithmen und
Berechnungskomplexität II
Sommersemester 2020

Abgabe: 11.07.2020, 12.00 Uhr
Besprechung: KW 29

Prof. Dr. Heiko Röglin
Anna Großwendt, David Kübel

Institut für Informatik

Übungsblatt 12

Aufgabe 12.1: Approximation Graphtraversierung

Wir betrachten das Problem der Graphtraversierung. Gegeben ist ein zusammenhängender Graph G = (V,E)
mit Kanten- und Knotengewichten, und ein Startknoten vs ∈ V . Das Gewicht eines Knotens v ist wv und das
einer Kante e ist we, alle Gewichte sind ≥ 1. Alle Agenten starten auf dem Startknoten vs, und diese können
sich entlang der Kanten von G bewegen. Eine Kante e kann jeweils nur von mindestens we Agenten überquert
werden, und ein Knoten v darf erstmals nur mit mindestens wv vielen Agenten betreten werden. Wird v erstmals
betreten so werden sofort wv Agenten auf v platziert – diese dürfen v nicht mehr verlassen. Das Ziel ist mit
möglichst wenigen Agenten auf jedem Knoten v mindestens wv Agenten zu platzieren.

Wir betrachten folgenden Algorithmus zum Traversieren eines Graphen G; der Algorithmus TraversiereBaum-
Optimal(T, vs) wird als Black-Box verwendet; sie berechnet eine Strategie mit der Baum T von Knoten vs aus
mit einer kleinstmöglichen Anzahl Agenten traversiert wird.

GraphtraversierungMST(G = (V,E), vs)

1. Konstruiere einen minimalen Spannbaum T = (V,ET ) von G

2. TraversierungsStrategie S := TraversiereBaumOptimal(T, vs)

3. return S

Sei N :=
∑

v∈V wv und wmax = maxe∈ET
we. Zeigen Sie

(a) S benötigt maximal N + wmax Agenten zum Traversieren von G.

(b) Zum Traversieren von G benötigt man mindestens wmax = maxe∈ET
we Agenten, wobei ET die Kanten-

menge eines minimalen Spannbaums von G ist.

(c) S benötigt zum Traversieren von G maximal doppelt so viele Agenten wie mindestens notwendig.

Es darf angenommen werden, dass alle nicht platzierten Agenten sich immer auf einem Knoten befinden bzw. sich
in einem Schritt alle über die gleiche Kante bewegen.

Aufgabe 12.2: 1/2-Approximation Bin Covering

Wir betrachten nun das Problem Bin Covering, eine Variante des Problems Bin Packing, welches in der
Vorlesung vorgestellt wurde und ebenfalls NP-vollständig ist. Gegeben sei eine Menge M von n Objekten
{w1, . . . , wn} mit Gewichten wi ∈ [0, 1] und beliebig viele Behälter unbeschränkter Kapazität. Ziel ist es eine
Zuweisung der Elemente von M auf die Behälter zu finden, die möglichst viele der Behälter füllt, d. h. die Summe
der Gewichte der Elemente eines Behälters beträgt mindestens 1.

Finden Sie eine 1
2 -Approximation, d. h. geben Sie einen Algorithmus an, welcher mindestens halb so viele

Behälter wie die optimale Lösung befüllt.

1



Aufgabe 12.3: 2-Approximation metrisches TSP

Wenden Sie den in der Vorlesung vorgestellten Algorithmus zur Berechnung einer 2-Approximation auf die unten
abgebildete Instanz des metrischen Traveling Salesperson Problems an. Dabei sei das Kantengewicht einer nicht
eingezeichneten Kante {u, v} gerade die Länge eines kürzesten Weges von u nach v. Starten Sie die Suche nach
einem Eulerkreis in Knoten A und besuchen Sie bei Wahlmöglichkeit Knoten mit im Alphabet vorangehenden
Buchstaben zuerst. Zeichnen Sie die resultierende TSP-Tour und geben Sie die finalen Kantengewichte an!

A

B C

D

E

F G

H

3

1

8

5

5

4

6

7

6

2

3

4

6

8

Aufgabe 12.4: Vertex Cover parametrisiert

Für die Entscheidungsvariante des Problems VERTEX COVER ist die Eingabe ein ungerichteter Graph G = (V,E)
und ein Parameter k ∈ N. Es soll überprüft werden, ob G ein VERTEX COVER der Kardinalität höchstens k besitzt.
Betrachten Sie folgenden Algorithmus:

RECURSIVE-VC-CHECK(G, k)

1. Falls E = ∅ und k ≥ 0, return ja.

2. Falls k ≤ 0, return nein.

3. Wähle beliebige Kante (u, v) aus E.

4. Bestimme Graphen Gu (bzw. Gv), durch Löschen von v (bzw. u) und inzidenten Kanten in G.

5. return RECURSIVE-VC-CHECK(Gu, k − 1) ∨ RECURSIVE-VC-CHECK(Gv, k − 1).

(a) Bestimmen Sie die Laufzeit von RECURSIVE-VC-CHECK in Abhängigkeit von (der Größe von) G und k.

(b) Für welche Werte von k ist die Laufzeit von RECURSIVE-VC-CHECK polynomiell in der Eingabegröße und
für welche nicht?

2


