Algorithmen und

Berechnungskomplexitéat I1 ' Prof. Dr. Heiko Réglin
Sommersemester 2020 Anna Grofiwendt, David Kiibel

Abgabe: 11.07.2020, 12.00 Uhr [JN|VERSITAT Institut fir Informatik
Besprechung: KW 29

Ubungsblatt 12

Aufgabe 12.1: Approximation Graphtraversierung

Wir betrachten das Problem der Graphtraversierung. Gegeben ist ein zusammenhéngender Graph G = (V, E)
mit Kanten- und Knotengewichten, und ein Startknoten vy € V. Das Gewicht eines Knotens v ist w, und das
einer Kante e ist we, alle Gewichte sind > 1. Alle Agenten starten auf dem Startknoten v, und diese kénnen
sich entlang der Kanten von G bewegen. Eine Kante e kann jeweils nur von mindestens w, Agenten {iberquert
werden, und ein Knoten v darf erstmals nur mit mindestens w,, vielen Agenten betreten werden. Wird v erstmals
betreten so werden sofort w, Agenten auf v platziert — diese diirfen v nicht mehr verlassen. Das Ziel ist mit
moglichst wenigen Agenten auf jedem Knoten v mindestens w, Agenten zu platzieren.

Wir betrachten folgenden Algorithmus zum Traversieren eines Graphen G; der Algorithmus TRAVERSIEREBAUM-
OPTIMAL(T, v,) wird als Black-Box verwendet; sie berechnet eine Strategie mit der Baum T von Knoten v, aus
mit einer kleinstmoglichen Anzahl Agenten traversiert wird.

GraphtraversierungMST (G = (V, E), vs)
1. Konstruiere einen minimalen Spannbaum T = (V, Er) von G
2. TraversierungsStrategie S := TRAVERSIEREBAUMOPTIMAL(T, vy)

3. return S

Sei N :=)", oy Wy und Wyyae = MaXee g, We. Zeigen Sie

(a) S benstigt maximal N 4 wi,q, Agenten zum Traversieren von G.

(b) Zum Traversieren von G bendtigt man mindestens wy,q; = MaXecp, we Agenten, wobei Er die Kanten-
menge eines minimalen Spannbaums von G ist.

(¢) S benétigt zum Traversieren von G maximal doppelt so viele Agenten wie mindestens notwendig.

Es darf angenommen werden, dass alle nicht platzierten Agenten sich immer auf einem Knoten befinden bzw. sich
in einem Schritt alle iiber die gleiche Kante bewegen.

Aufgabe 12.2: 1/2>-Approximation Bin Covering

Wir betrachten nun das Problem Bin Covering, eine Variante des Problems Bin Packing, welches in der
Vorlesung vorgestellt wurde und ebenfalls NP-vollstdndig ist. Gegeben sei eine Menge M von n Objekten
{w1, ..., w,} mit Gewichten w; € [0,1] und beliebig viele Behilter unbeschrinkter Kapazitéit. Ziel ist es eine
Zuweisung der Elemente von M auf die Behilter zu finden, die moglichst viele der Behéilter fiillt, d. h. die Summe
der Gewichte der Elemente eines Behilters betréigt mindestens 1.

Finden Sie eine %—Approximation, d.h. geben Sie einen Algorithmus an, welcher mindestens halb so viele
Behilter wie die optimale Losung befiillt.

Aufgabe 12.3: 2-Approximation metrisches TSP

Wenden Sie den in der Vorlesung vorgestellten Algorithmus zur Berechnung einer 2- Approximation auf die unten
abgebildete Instanz des metrischen Traveling Salesperson Problems an. Dabei sei das Kantengewicht einer nicht
eingezeichneten Kante {u, v} gerade die Linge eines kiirzesten Weges von « nach v. Starten Sie die Suche nach
einem Eulerkreis in Knoten A und besuchen Sie bei Wahlmoglichkeit Knoten mit im Alphabet vorangehenden
Buchstaben zuerst. Zeichnen Sie die resultierende TSP-Tour und geben Sie die finalen Kantengewichte an!

Aufgabe 12.4: Vertex Cover parametrisiert

Fiir die Entscheidungsvariante des Problems VERTEX COVER ist die Eingabe ein ungerichteter Graph G = (V, E)
und ein Parameter k € N. Es soll iiberpriift werden, ob G ein VERTEX COVER der Kardinalitéit hochstens k besitzt.
Betrachten Sie folgenden Algorithmus:

RECURSIVE-VC-CHECK(G, k)
1. Falls E = und k > 0, return ja.
2. Falls k < 0, return nein.
3. Wihle beliebige Kante (u,v) aus E.
4. Bestimme Graphen G, (bzw. G,), durch Loschen von v (bzw. w) und inzidenten Kanten in G.
5. return RECURSIVE-VC-CHECK(G,, k — 1) V RECURSIVE-VC-CHECK(G,, k — 1).

(a) Bestimmen Sie die Laufzeit von RECURSIVE-VC-CHECK in Abhéngigkeit von (der Grée von) G und k.

(b) Fiir welche Werte von k ist die Laufzeit von RECURSIVE-VC-CHECK polynomiell in der Eingabegrofie und
fiir welche nicht?

