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PAC Learning

Thomas Kesselheim Letzte Aktualisierung: 22. April 2020

Zum Einstieg betrachten wir bindre Klassifikation. Das heifit, wir miissen Datenpunkte klas-
sifizieren nach ,positiv¢ oder ,negativ®. Einige korrekt klassifizierte Punkte sind uns gegeben.
Es konnte sich also beispielsweise um E-Mails handeln, bei denen wir automatisch ,,Spam* und
,Nicht-Spam* unterscheiden wollen. Diese Beschriftung ist ein Label.

1 Schwellenwertfunktionen

Unser erstes Beispiel nimmt stark vereinfachend an, dass jeder Datenpunkt nur ein einziges
Merkmal z € X := R hat, das eine reelle Zahl ist. Die jeweilige Auspriagung des Merkmals
charakterisiert einen Datenpunkt perfekt: Wann immer x > a ist, handelt es sich um einen
positiv zu klassifizierenden Punkt, ansonsten um einen, der negativ zu klassifizieren ist.

Das heifit, wir kénnen eine Funktion f: X — {—1,+1} angeben, die die korrekten Labels

beschreibt. Sie lautet
+1 fallsz >a
-]

—1 sonst

Diese Funktion nennen wir Grundwahrheit (ground truth).

Obwohl die Struktur der korrekten Labels sehr einfach ist, ist die Aufgabe nicht trivial. Wir
kennen némlich a nicht. Uns werden lediglich m Datenpunkte mit korrekten Labels gegeben. Die
zentrale Frage ist: Wie groff muss m sein, damit wir neue Datenpunkte einigermaflen zuverldssig
klassifizieren kénnen?

Ein Beispiel mit m = 7 konnte also so aussehen:

2 Hypothesen und Fehler

Konkreter nehmen wir an, dass die Datenpunkte x aus irgendeiner Wahrscheinlichkeitsverteilung
D gezogen werden. Unseren Hypothesenraum bezeichnen wir mit H. In diesem Fall ist H die
Menge aller Funktionen der Form h, : R — {—1,+1} mit

haf(x) =

+1 fallsz>ad
—1 sonst
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Unser Ziel ist es, eine Hypothese h mit moglichst kleinem Fehler errp ¢(h) zu finden. Dieser ist
wie folgt definiert.

Definition 1.1. Der tatséchliche Fehler (oder tatséchliches Risiko) errp ¢(h) einer Hypothese
h hinsichtlich einer Wahrscheinlichkeitsverteilung D tber Datenpunkte und Grundwahrheit f
15t

errp ¢(h) = Pryop [h(z) # f(x)] .

Beispiel 1.2. Sei D die uniforme Verteilung auf [0, 1]. Der tatsichliche Fehler einer Hypothese
hq ist errp f(hy) = |a — d'|, wenn a,d’, € [0,1]. Da a jedoch im Allgemeinen nicht bekannt ist,
kann dieser jedoch von einem Lernalgorithmus nicht berechnet werden.

In diesem Beispiel und auch im Folgenden vereinfachen wir uns das Leben durch die Annah-
me, dass die Grundwahrheit realisierbar ist. Das heifit, dass f € H. Dies ist in unserem Beispiel
natiirlich erfiillt. In der Realitét hingegen sind die Hypothesenklassen meist nicht méchtig genug,
um alle Datenpunkt richtig zu klassifizieren.

3 Lernen mit Samples

Wie finden wir also eine Hypothese h, die den tatsdchlichen Fehler errp ¢(h) mdoglichst klein
h&lt? Wir nehmen an, dass uns m Datenpunkte mit korrekten Labels gegeben sind. Seien also
x1,...,T,m Datenpunkten, die unabhéngig und identisch verteilt aus D gezogen sind. Auflerdem
seien y1 = f(z1),...,Ym = f(xm,) die zugehorigen korrekten Labels. Die Menge aller Samples
bezeichnen wir mit S = {(z1,v1),..., (Tm, Ym)}-

Ein einfacher Lernalgorithmus wihlt nun das gréite o/, sodass h, die Menge S korrekt
klassifiziert. Das heifit, wir setzen a’ auf den Wert des kleinsten z; mit y; = 1, wenn es ein
solches gibt. Anderenfalls a’ = oo.

In unserem Beispiel sieht das so aus:

Satz 1.3. Sei hy die vom einfachen Lernalgorithmus berechnete Hypothese, der als Fingabe ein
Sample von m Datenpunkten mit korrekten Labels gemdf f erhdlt, die unabhdngig und identisch
verteilt aus D gezogen werden. Dann gilt fir alle € > 0, dass Pr [errp (hy) > € <e™" .

Beweis. Weil unser Lernalgorithmus das grofite a’ wihlt, wird auf jeden Fall gelten, dass a’ > a.
Falsch klassifiziert werden alle Punkte im Bereich [a,a’). Somit gilt nun fiir jede Verteilung D

errp, f(he') = Pryop [z € [a,d')]

Sei nun a” die kleinste Zahl, sodass Pr,.p [z € [a,a”]] > €. Der Fehler von h, wird also
hochstens e sein, falls ' < a”. Dies geschieht, wenn es mindestens ein i gibt, sodass z; € [a,a”].
Sei &; das Ereignis, dass z; € [a,d”]. Es gilt Pr [£;] > e. (Fiir den Fall einer stetigen Verteilung
gilt hier Gleichheit.)
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PI';END [I’ < t]

Damit nicht a’ < a” gilt, darf keines der Ereignisse &; eintreten. Wir interessieren uns also
fir N, &. Weil z1, ..., z,, unabhingige Ziige aus D sind, gilt nun auch

ﬂé] :Hpr [E]l<@—-e™ .

Wir kénnen nun die Abschitzung 1 — z < e™* fiir alle z € R verwenden. Somit erhalten wir
insgesamt die Behauptung. O

Pr

Satz 1.3 sagt uns nun insbesondere, dass wenn wir m = %ln (%) wéahlen, die Wahrschein-
lichkeit, dass der tatsdchliche Fehler unserer gefundenen Hypothese grofier als e ist, kleiner als
0 wird.

4 PAC-Lernbarkeit

Diese Aussage gilt fiir alle € > 0 und alle 6 > 0. Wenn die Anzahl der Samples also nur grof3
genug ist, werden wir mit groler Wahrscheinlichkeit nur einen sehr kleinen Fehler haben. Die
Hypothesenklassen, fiir die dies gilt, heiflen PAC-lernbar.

Definition 1.4. Fine Hypothesenklasse H heifst PAC-lernbar (im realisierbaren Sinn), wenn es
eine Funktion mqy und einen Lernalgorithmus A gibt, sodass der Algorithmus fiir alle €,§ > 0,
jede Verteilung D und alle f € H, gegeben ein Sample S von Grofie mindestens my (e, §) von Da-
tenpunkten mit korrekten Labels, eine Hypothese hg € H berechnet, sodass Pr [errp ¢(hg) < €] >
1-4.

Ferner heif§t sie effizient PAC-lernbar, wenn es einen Polynomialzeitalgorithmus A mit obi-
ger Eigenschaft gibt.

PAC steht fiir ,,probably approximately correct®. ,Probably“ bedeutet in diesem Fall, dass
die Wahrscheinlichkeit mindestens 1 — ¢ ist, ,, approximately correct* bezieht sich darauf, dass
errp f(hg) < e.

Nicht jede Hypothesenklasse ist PAC-lernbar. Zum Beispiel ist die Klasse aller Hypothesen
N — {—1,+1} nicht PAC-lernbar. Dies werden wir im Laufe der Vorlesung beweisen.

5 Weiteres Beispiel: Lernen von Intervallen

Nun betrachten wir als Hypothesenklasse H die Menge aller Funktionen der Form hq p: R —
{—1,+1} mit

ha’,b’ (33‘) =

+1  falls z € [d/, V]
—1 sonst
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Wir sind wieder im realisierbaren Fall. Das heif3t, es gibt eine Grundwahrheit f € H, die
alle Datenpunkte richtig klassifiziert. Nun also

Fa) = {+1 falls z € [a, D]

) -1 sonst

Gegeben ist wieder eine Menge S = {(x1,¥1), - - -, (Tm, Ym)} von Datenpunkten mit korrekten
Labels. Unser Lernalgorithmus wihlt das kleinste Intervall [a/,'], das S korrekt klassifiziert.
Das heifit, wir setzen @’ auf den Wert des kleinsten z; mit y; = 1 und ¢’ auf den Wert des
grofiten x; mit y; = 1. Den Fall, dass es kein ¢ mit y; = 1 gibt, ignorieren wir.

em

Satz 1.5. Fir alle e > 0 gilt Pr [errp,f(ha/ﬁ/) > e] <2 2.
Beweis. Weil unser Lernalgorithmus das kleinste Intervall wahlt, wird auf jeden Fall gelten,

dass @’ > a und V' < b. Falsch klassifiziert werden alle Punkte im Bereich [a,a’) U (b, b]. Somit
gilt nun fiir jede Verteilung D

errp, f(ha ) = Prop [l‘ € la,a)u (¥, b]]

Sei auerdem dhnlich wie oben a” die kleinste Zahl, sodass Pr,p [z € [a,a”]] > §. Analog
sei 0" die grofite Zahl, sodass Pryp [z € [0”,b]] > §. Damit errp f(hy ) < € ist es nun hin-
reichend, dass @’ < a” und ¥ > b”. Dies geschieht, wenn es je mindestens ein i gibt, sodass
x; € la,ad”] bzw. x; € [V, b].

Fiir jedes 7 gilt

Pr [z; € [a,ad"]] > und  Pr[z; € V', 0] >

DN ™
DN ™

WEeil x4, ...,z unabhingige Ziige aus D sind, gilt nun auch

Pr [:cl,...,xm o4 [a,a"]] < (1 - %)m und Pr [wl,...,:rm g [b",b]] < (1 - %)m )

Damit gilt auch
E\NM
Pr [21,...,2m & [a,a"] oder z1,..., 2y & [V, ]] <2 <1 — 5) ,

wobei wir die Abschétzung Pr [£ U F| < Pr [£]+ Pr [F] fiir zwei Ereignisse £ und F verwendet
haben.

Die Behauptung folgt nun wieder mit der Abschétzung 1 — x < e~ fiir alle z € R. O

Referenzen

e Foundations of Machine Learning, Kapitel 2.1

e Sieche auch die Vorlesungsskripte von Anna Karlin https://courses.cs.washington.
edu/courses/cse522/17sp/ und Avrim Blum http://www.cs.cmu.edu/~avrim/ML14/.
Diese enthalten weitere Referenzen.
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Wachstumsfunktion

Thomas Kesselheim Letzte Aktualisierung: 24. April 2020

1 Wiederholung: PAC-lernbar (Realisierbarer Fall)

Unsere Aufgabe ist es, Datenpunkte aus einer Menge X zu klassifizieren, beispielsweise X C R.
Die Label werden binér sein, das heifit -1 oder 1. Beispielsweise konnte X die Menge aller E-
Mails sein und die Labels habe die Bedeutung ,nicht Spam* oder ,Spam*. Unser Ziel ist es,
dass wir fiir jeden Datenpunkt z, den wir als Eingabe erhalten, das korrekte Label y € {—1, 1}
vorhersagen zu kénnen.

Es gibt eine Klasse von Hypothesen #H. Jede hat die Form h: X — {—1,1}. Wir nehmen
an, dass wir im realisierbaren Fall sind. Das heifit, es gibt eine Grundwahrheit f € H, die
eine unserer moglichen Hypothesen ist, und das korrekte Label fir x € X ist immer f(x). Wir
mochte nun eine Funktion A € H finden, die moglichst &hnlich zum korrekten f ist. Dafiir steht
uns aber nur eine begrenzte Anzahl Samples mit korrekten Labels zur Verfiigung.

Wir erinnern uns an die Definition von PAC-Lernbarkeit.

Definition 2.1. Fine Hypothesenklasse H heifst PAC-lernbar (im realisierbaren Sinn), wenn es
eine Funktion mqy und einen Lernalgorithmus A gibt, sodass der Algorithmus fiir alle €,§ > 0,
jede Verteilung D und alle f € H, gegeben ein Sample S von Grifie mindestens my(e,d) von Da-
tenpunkten mit korrekten Labels, eine Hypothese hg € H berechnet, sodass Pr [errp ¢(hg) < €] >
1-9.

Hierbei ist errp f(h) := Pryp [h(z) # f(x)] der tatséchliche Fehler von h. Zwei Beispiele
dafiir haben wir bereits gesehen. Heute wollen wir uns das Thema etwas allgemeiner anschauen.

2 Minimierung des Trainingsfehlers

Wir werden uns allgemeiner Algorithmen anschauen, die den Trainingsfehler minimieren.

Definition 2.2. Der Trainingsfehler (oder empirisches Risiko) errg(h) einer Hypothese h hin-
sichtlich einer Trainingsmenge S ist

errs(h) i= —[{h(a) £ i}

Im realisierbaren Fall gilt fiir die Grundwahrheit f immer errg(f) = 0 fiir alle S. Unsere
Algorithmen aus der letzten Vorlesung berechneten jedoch auch jeweils Hypothesen h, sodass
errg(h) = 0. Auch diese minimieren also den Trainingsfehler. Unsere Frage heute wird sein, den
tatséichlichen Fehler von Hypothesen zu beschrianken, die den Trainingsfehler minimieren.

3 Endliche Hypothesenklassen

Wir betrachten zunéchst den einfachen Fall, dass die Menge H endlich ist, wenn auch ansonsten
beliebig.

Satz 2.3. Wenn m > %ln (‘?—‘), dann gilt mit Wahrscheinlichkeit mindestens 1 — §, dass alle

h € H mit errg(h) = 0 auch errp s(h) < € erfiillen.
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Beweis. Wir betrachten zunéchst ein festes h € H mit errp ¢(h) > €, das heifit, der tatsdchliche
Fehler von h ist mindestens e. Nun gilt

Pr[errg(h) = 0] = Pr [h(z1) = y1,..., M(Tm) = Ym]
=Prh(z1)=wn] ... Pr{h(zm) =ym| < (1—¢)" <e .

Das heifit, dass die Wahrscheinlichkeit, dass h keinen Trainingsfehler hat, héchstens e~ ist.

Um die Gesamtwahrscheinlichkeit zu beschrénken, dass es irgendeine Hypothese gibt, die
zwar keinen Trainingsfehler, aber grofien tatséchlichen Fehler hat, benutzen wir die sogenannte
Union Bound.

Lemma 2.4 (Union Bound). Es seien &1, ..., &, (nicht notwendigerweise disjunkte) Ereignisse.

Dann gilt
U 5@-] <> Prl&]
i=1 i=1

Der Beweis der Union Bound folgt durch induktive Anwendung von Pr [AU B] = Pr [A4] +
Pr [B] - Pr[AN B] < Pr[A] + Pr[B].

Um nun die Union Bound anzuwenden, definieren wir fiir jede Hypothese h € H das Ereignis
&n, dass errg(h) = 0.

Nun gilt

Pr

Pr[3h € H :errp ¢(h) > € und errg(h) = 0] = Pr U En
heMt,errp f(h)>e
< Z Pr [errg(h) = 0]
heH,errp y(h)>e
< [Hlem™ <6 =

4 Wachstumsfunktion

Dieses Ergebnis niitzt uns natiirlich nichts, wenn H unendlich ist. Wir haben allerdings schon
Beispiele gesehen, dass auch unendliche Hypothesenklassen PAC-lernbar sein kénnen, beispiels-
weise die Schwellenwertfunktionen. Diese haben eine Struktur, die wir ausnutzen kénnen. Dies
kénnen wir wie folgt formalisieren.

Definition 2.5. Gegeben S C X, sei H|s die Menge aller Hypothesen h € H mit Definitions-
bereich eingeschrinkt auf S. Das heifit, H|s = {hls | h € H}.
Die Wachstumsfunktion von H ist definiert als Ty (m) = maxgc x| 5/=m|H|s|-

Weil die Abbildungen in H|s von S nach {—1,+1} abbilden, kénnen es nicht mehr als 2™
verschiedene sein, weil es nicht mehr Abbildungen gibt. Somit muss immer I1y(m) < 2™ gelten.
Haufig sind die Werte von Il jedoch viel kleiner.

Beispiel 2.6. Betrachte X =R und H als die Klasse der Schwellenwertfunktionen

o () +1  fallsxz > d
a\T) =
—1  sonst
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Fiir S ={2,3,4} besteht H|s aus folgenden vier Funktionen:

xw— —1  fir alle x x+— +1  fiir alle x
-1 firx=2oderxz =3 -1 firxz=2
T = T =
+1  firz=4 +1  firxz=3 oder x =4

Es gibt noch vier weitere Funktionen {2,3,4} — {—1,+1}. Diese lassen sich aber nicht iber
einen Schwellenwert realisieren.

Allgemein gilt Ty (m) = m+ 1, denn es gibt nur m+ 1 mégliche ,,Umschaltpunkte von —1
auf +1. Das heifit, die Funktion wdchst deutlich schwdcher als 2™.

Der folgende Satz zeigt, dass wir in der Aussage von Satz 2.3 im Wesentlichen die Grofie
von H durch die Wachstumsfunktion ersetzen kénnen.

Satz 2.7. Es seien € > 0 und § > 0 beliebig und

mZmax{f,ilogQ <2H”5(2m))} . (1)

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemaf f gezogen unabhdngig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1 — 9, dass alle h € H
mit errg(h) = 0 auch errp f(h) < € erfiillen.

Bevor wir mit dem Beweis dieses Satzes beginnen, schauen wir uns zunéchst die Aussage et-
was genauer an. Sie hat grundsétzlich die Struktur der Aussage, wie wir sie fiir PAC-Lernbarkeit
brauchen. Wenn m Bedingung (1) erfiillt, dann fiihrt beliebiger Lernalgorithmus, der den Trai-
ningsfehler minimiert, zu einem tatséchlichen Fehler von hochstens € mit Wahrscheinlichkeit
mindestens 1 — 4.

Wann gilt jedoch Bedingung 1 und wann ist sie iiberhaupt fiir alle € und § erfiillbar? Schauen
wir uns nur noch m > % an, dann brauchen wir noch

2 2y (2m)\ 2 2 2 m —log, (3) _ 2
> =1 ST ) = Slog, (T (2 Z1 —— 0 > =
M= og2( ) > € 0g2 (T (2m)) + e B2 (5) logy (IIy(2m)) ~ €

Wenn II3(2m) = 2?™ (die triviale Schranke), dann ist log, (IT3(2m)) = 2m. Die Ungleichung
ist also fiir sinnvolle € (d.h. € < 1) nicht erfiillbar.

Wiéchst hingegen log, (ITy(2m)) schwécher als m, das heifit, log, (Il (2m)) = o(m), dann
muss m nur ausreichend grofl genug gewéihlt werden, um die Schranke zu erfiillen.

Im Beispiel mit den Schwellenwertfunktionen ist dies der Fall. Es gilt I3 (2m) = 2m + 1.
Nun gilt also fiir alle § > 0, dass

m — log, (%) m — log, (%)

= —o00 firm— oo .
logy (I3 (2m))  logy(2m + 1)

Egal, wie € und § als gewéhlt sind, fiir gentigend grofie m ist Bedingung 1 immer erfiillt.
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Mengensysteme

Anne Driemel Letzte Aktualisierung: 2. Mai 2020

In den letzten Vorlesungen haben wir uns mit PAC-Lernbarkeit unter Annahme fester Hy-
pothesenklassen beschéftigt. Wir haben gesehen, dass die Struktur einer Hypothesenklasse auch
etwas iiber die Lernbarkeit aussagt, sofern die Hypothesenklasse realisierbar ist. In dieser Vorle-
sung werden wir uns mit der Struktur der Hypothesenklassen aus der Sicht von Mengensystemen
befassen und allgemeine Eigenschaften ableiten. Wir nehmen dabei noch stets die Realisierbar-
keit der Hypothesenklasse an.

1 Mengensysteme

Definition 3.1 (Mengensystem). Sei X' eine beliebige Menge und R eine Menge von Teilmen-
gen von X. Wir nennen R ein Mengensystem mit Grundmenge X .

Jede Hypothesenklasse H, definiert durch eine Menge von Funktionen der Form
h: X — {-1,+1},

kann gleichsam durch ein Mengensystem beschrieben werden. Wir definieren fiir jede Funktion
h € H eine Menge
rn={xzeX | hix)=1},

welche also genau der positiven Menge entspricht. Die Menge aller Mengen 75, bildet dann das
Mengensystem.

Beispiel 3.2. Die Menge aller achsenparallelen Rechtecke in der Ebene definiert ein Mengen-
system R mit Grundmenge X = R2. Formal ist jedes Element r € R definiert durch ein Tupel
(a,b,c,d) mit

ra,b,c,d:{ (l’,y)EX | CLSZES(),CSySd}

Eine wichtige kombinatorische Eigenschaft von Mengensystemen ist ihre VC-dimension, be-
nannt nach Vapnik und Chervonenkis.

Definition 3.3 (Abspalten). Wir sagen eine Menge A’ C X wird durch ein Mengensystem R
von einer Menge A C X abgespalten, wenn A’ durch den Schnitt mit einer Menge von R erzeugt
werden kann. Das heifst, es existiert einr € R mit A’ =r N A.

Definition 3.4 (Aufspalten). Fine Menge A C X wird durch ein Mengensystem aufgespalten,
wenn alle Teilmengen von A abgespalten werden kinnen.

Definition 3.5 (VC-dimension). Die VC-dimension von R ist die Anzahl der Elemente in der
grofiten durch R aufgespaltenen Menge. Fulls keine solche Menge existiert, dann ist die VC-
dimension unendlich. Wir bezeichnen die VC-dimension mit dim(R). Fiir den Sonderfall R = ()
definieren wir dim(0) = 0.

Schauen wir uns die VC-dimension im oben genannten Beispiel genauer an. Die VC-dimension
von R ist mindestens 4, da wir eine 4-elementige Menge A von Punkten in der Ebene angeben
konnen, die von R aufgespalten wird. Abbildung 1 zeigt eine solche Menge. Gleichzeitig kénnen
wir zeigen, dass fiir jede 5-elementige Menge A’ gilt, dass sie nicht durch R aufgespalten wird.
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o) q )

Abbildung 1: (links) Beispielmenge die durch das Mengensystem der achsenparallelen Rechte-
cke aufgespalten wird. Exemplarisch dargestellt sind auch drei achsenparallele Rechtecke, die
verschiedene Teilmengen abspalten. (rechts) Bei fiinf Punkten kénnen wir immer einen Punkt ¢
finden, sodass das Komplement nicht durch ein achsenparalleles Rechteck abgespalten werden
kann.

f e

Abbildung 2: Beispielmenge von Punkten die durch das Mengensystem aller konvexer Poly-
gone aufgespalten wird. Exemplarisch dargestellt ein Polygon, das die Teilmenge {a,b,d, f, h}
abspaltet.

Angenommen alle Koordinaten der Punkte in A sind paarweise verschieden. Da die Menge 5
Punkte enthéilt, existiert ein Punkt ¢ € A, der weder die xz-Koordinate, noch die y-Koordinate
in A minimiert oder maximiert. Es folgt, dass ¢ in allen achsenparallelen Rechtecken enthalten
ist, welche die Menge A\ {¢q} enthalten. Daher existiert keine Menge r € R, sodass

A\{q} =Anr.

Damit ist die VC-dimension des Mengensystems der achsenparallelen Rechtecke genau 4.

Es gibt auch Mengensysteme mit unendlicher VC-dimension. Betrachten wir das Mengensys-
tem aller konvexen Polygone in der Ebene. Konvexe Polygone sind dadurch definiert, dass jeder
Innenwinkel hochstens 180° betrédgt. Fiir jede natiirliche Zahl n kénnen wir eine n-elementige
Menge finden, welche durch dieses Mengensystem aufgespalten wird. Sei A,, eine Menge von
n Punkten auf dem Einheitskreis. Jede Teilmenge A C A,, definiert als Menge von Ecken ein
konvexes Polygon P mit der gewiinschten Eigenschaft, siche Abbildung 2. Somit ist die VC-
dimension des Mengensystems der konvexen Polygone unendlich.
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2 Wachstum von endlichen Mengensystemen

Ein Mengensystem ist endlich, wenn es nur endlich viele Mengen enthélt. Wieviele Mengen kann

ein Mengensystem mit ‘X ‘ = m enthalten? Allgemein gilt ‘R‘ < 2‘)(‘ = 2™. Was, wenn die
VC-dimension kleiner als m ist?

Beispiel 3.6. Sei X = {1,2,...,m} und sei R das Mengensystem, das alle Teilmengen von
mazximaler Grifie k enthdlt. Die VC-dimension dieses Mengensystems ist k. Wir konnen alle
generierten Mengen aufzihlen und sehen direkt, dass

R| = Zk: (") < Xk:m’f < (k + 1)m".
=0

=0

Fiir ein festes k wdchst die Anzahl der Mengen im Beispiel héchstens polynomiell in der Grifie
des Mengensystems m.

Wir wollen nun eine asymptotische obere Schranke zeigen, die dieses Wachstum im allgemei-
neren Fall von endlichen Mengensystemen mit endlicher VC-dimension beschreibt. Das folgende
Lemma zeigt, dass die VC-dimension das Wachstum in diesem Sinne charakterisiert.

Lemma 3.7. Es gilt fiir jedes Mengensystem R mit m-elementiger Grundmenge X und VC-

dimension d, dass
d

Rl <Y (7).

Rl (]
Beweis. Wir zeigen den Satz durch Induktion iiber m mit Induktionsanfang m = 0. In diesem
Fall kann R hochstens die leere Menge enthalten, also ist ‘R} < 1 und d < 0. Gleichzeitig gilt
per Definition des Binomialkoeffizienten, dass (8) = 1. Damit ist die Aussage fiir den Indukti-
onsanfang erfiillt. Im Induktionsschritt nehmen wir an, dass m > 0. Sei R ein Mengensystem
mit Grundmenge X und VC-dimension d. Nehmen wir an, dass d = 0. In diesem Fall kann man
auch zeigen, dass ‘R| < 1 und die Aussage ist erfiillt. Also nehmen wir an, dass d > 0.

Sei z € X fest und betrachte das Mengensystem

Ri={r\{z} | reR }.

Sei die VC-dimension d;. Beachte, dass d; < d ist, da jede Menge A C X'\ {z} die durch
R1 aufgespalten wird, auch durch R aufgespalten wird.
Nun folgt aus der Induktionsannahme, dass

mgg(m;)giﬁ;(m;).

Allerdings kénnte es sein, dass zwei verschiedene Mengen in R durch die Beschrankung auf
X\ {z} identisch werden und dadurch |R;| strikt kleiner ist als |R|. Wir definieren ein zweites
Mengensystem um genau diese Paare von Mengen zu zéhlen, wie folgt

Ro={r\{z} | r\{z} eRundru{z} eR }.

Es folgt nun, dass
R] = [Ra] + [Ral.
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Sei dy = dim(R2). Wir behaupten, dass do < d—1. Angenommen, dem wére nicht so und die
VC-dimension wére mindestens d. Dann existierte eine Menge A C X'\ {z} mit |A| = d, sodass
A durch Ry aufgespalten wird. Dann wiirde auch die Menge A U {x} durch R aufgespalten,
denn R enthilt ja nur solche Paare von Mengen aus R, die bis auf = identisch sind. Das wiirde
aber der Grundannahme widersprechen, dass die VC-dimension von R gleich d ist.

Somit gilt nach Induktionsannahme, dass

da d—1 d
< (") =2 (") =100
i=0 i=0 j=1
Durch Einsetzen in die obige Gleichung bekommen wir
im—1 dim—1 im—1 m—1 dm
= (") () =R (M) (05 - ()

wobei die letzte Gleichung aus der rekursiven Darstellung des Binomialkoeflizienten folgt.

O]

3 Unendliche Mengensysteme

Wir wollen nun die obige Schranke erweiteren auf unendliche Mengensysteme. Also Mengensys-
teme, die unendlich viele Mengen enthalten. Insbesondere sind wir interessiert am Wachstum
der Anzahl der durch das Mengensystem abgespaltenen Teilmengen. Um das zu formalisieren
betrachten wir Untersysteme, die wir wie folgt definieren.

Definition 3.8 (Untersystem). Sei R ein Mengensystem mit Grundmenge X. Jede Menge
A C X bestimmt ein Untersystem von R wie folgt

Rla={rnA | reR}.

Das heifit, R|a ist ein Mengensystem mit Grundmenge A, welches genau die Teilmengen von
A enthdlt, die von A durch R abgespalten werden kinnen. Die VC-dimension kann durch die
Beschrinkung auf ein Untersystem nicht grofer werden, also gilt dim(R|4) < dim(R).

Beispiel 3.9. Wir haben Untersysteme schon kennengelernt, auch wenn wir sie nicht so ge-
nannt haben. Insbesondere ist das Mengensystem R aus vorhergehendem Beweis das Untersys-
tem von R beschrinkt auf X \ {z}, denn,

Ri={r\{z} | reR}={rn(X¥\{z}) | r€R}=Rlnm

Satz 3.10 (Wachstumslemma). Sei R ein Mengensystem mit Grundmenge X und VC-dimension
d. Fiir jede natirliche Zahl m gilt, dass
em\d
Mg (m) = max [R|4| < (?)
|A|l=m
Wir nennen llp die Wachstumsfunktion von R.

Beweis. Da die VC-dimension durch die Beschrénkung auf ein Untersystem nicht grofier werden
kann, kénnen wir Lemma 3.7 direkt anwenden und bekommen fiir jede Menge A’ C X mit
|A’ } = m, dass

IR |ar

<3 (7).
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Nun machen wir folgende Abschétzung

(1) === () 5= (D)5

0o gt
=0 4!

S (7)) - () S ()

Zusammen mit der Reihendefinition der Exponentialfunktion e* = bekommen wir

dann

Da wir die Schranke fiir jede m-elementige Menge A’ zeigen, gilt sie auch fiir die grofite
solche Menge. Damit ist der Satz bewiesen. O

4 PAC-Lernbarkeit

Unsere Motivation um Mengensysteme zu studieren war zu Beginn mit der Hoffnung auf bessere
Schranken fiir die PAC-Lernbarkeit von Hypothesenklassen begriindet. Sei H eine Hypothesen-
klasse und sei R das entsprechende Mengensystem mit Grundmenge X'. Sei S C X. Schauen
wir uns die Definitionen von R|s und H|s genauer an, sehen wir, dass diese dquivalent im
Sinne unserer Abbildung zwischen Hypothesenklassen und Mengensystemen sind. Insbesondere
beschreibt die Funktionsmenge H|g alle verschiedenen Wege, Labels in {—1, +1} fiir die Menge
S zu vergeben mithilfe einer Funktion in . Im Kontext von Mengensystemen entspricht R|g
alle verschiedenen Wege, mithilfe einer Menge r € R eine Teilmenge von .S abzuspalten. Diese
Teilmengen entsprechen dann den positiven Teilmengen von S, die sich aus Funktionen in H
ergeben. Somit gilt fiir die Wachstumsfunktion

I = Hls| = Rls| =10 1

2 (m) nggﬁ;l(:m\ s sg%ﬁs)fzm‘ |s| = TIg(m) (1)

Satz 3.11. Sei H eine Hypothesenklasse mit VC-dimension d. Seien 1 > ¢ > 0 und § > 0
beliebig und sei

(2)

4 2 & 16
m > max | — logy
€

2 %00, 22
6 € Ong

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemdfl f gezogen unabhdingig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1 — 6, dass alle h € H
mit errg(h) = 0 auch errp (h) < e erfiillen.

Beweis. Wir wollen Satz 2.7 aus der letzten Vorlesung anwenden, der besagt, dass die obige
Behauptung gilt, sofern die folgende Bedingung fiir m erfiillt ist.

mZmaX{f,ilogQ <2H;.¢5(2m)>} . (3)

Dafiir miissen wir nur zeigen, dass unsere Bedingung (2) die Bedingung (3) impliziert.
Zunéchst haben wir, dad > 1 und € < 1,

8&d 16 8
m> —loggy— = m > —
€ € €

womit der erste Teil von Bedingung (3) gezeigt ist.
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Wir behaupten nun, dass aus Bedingung (2) auch folgt, dass

m > %logQ <§ . (26(17”)(1) . (@)

Aus der Gleichheit der Wachstumsfunktionen von Hypothesenklassen und den zugehorigen
Mengensystemen in (1) und der Schranke aus dem Wachstumslemma (Satz 3.10) folgt

(T)d > 113(2m)

und somit wéire
2 2114, (2
€

Damit wire auch der zweite Teil der Bedingung 3 gezeigt.
Es bleibt, die Behauptung (2) = (4) zu zeigen. Dafiir formen wir (4) zunéchst wie folgt

um.
m =z € g2 § € 2 ] .

Zun#chst haben wir fiir die Abschéitzung des ersten Terms

4 2 m _ 2 2
> Zlogy = = — > Zlog, = 6
m_€0g26 2_€Og25 ()

Fiir die Abschitzung des zweiten Terms zeigen wir
m _ 2 2em

— > —dlo —_— 7
> Zang, (27) )
Setzen wir zundchst m = %logQ 1—56 auf beiden Seiten ein, sehen wir durch dquivalente

Umformung, dass die Ungleichung fiir 0 < € < 1 erfiillt ist. Das gilt auch fiir gréflere Werte von
m. Die Behauptung in (5) folgt nun durch das Addieren der beiden Ungleichungen in (6) und
(7). O

Referenzen
e Foundations of Machine Learning, Kapitel 3.3

e Understanding Machine Learning, Kapitel 6.2-6.5 (anderer Beweis!)

e Sariel Har-Peled, Geometric Approximation Algorithms. AMS Mathematical Surveys and
Monographs, Band 173. 2011.
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1 Erinnerung: Wachstumsfunktion

Wir erinnern uns, dass eine Hypothesenklasse H eine Menge von Funktionen der Form h: X —
{—=1,+1} ist. Wir haben schon viele Beispiele gesehen, vor allem mit X = R. Diese Hypothesen-
klassen enthalten jedoch nicht alle Funktionen sondern besitzen deutlich mehr Struktur. Dies
wird formalisiert in der Wachstumsfunktion.

Definition 4.1. Gegeben S C X, sei H|s die Menge aller Hypothesen h € H mit Definitions-
bereich eingeschrinkt auf S. Das heifit, H|s = {hls | h € H}.
Die Wachstumsfunktion von H ist definiert als Ily(m) = maxgc x| sj=m|H|s|-

In der letzten Vorlesung haben wir ein extrem hilfreiches Werkzeug gesehen, um die Wachs-
tumsfunktion zu beschrinken: die VC-Dimension. Wir haben bewiesen, dass wenn die VC-
Dimension d ist, auch IIy(m) < (%)d gilt. Das heifit, wenn die VC-Dimension endlich ist,
wéchst die Wachstumsfunktion nur polynomiell.

2 Subexponentielles Wachstum impliziert PAC-Lernbarkeit

Es steht noch der Beweis des Satzes aus der zweiten Vorlesung aus, dass derartiges subexpo-
nentielles Wachstum tatséchlich PAC-Lernbarkeit impliziert. Wir betrachten wieder eine Hypo-
thesenklasse H, eine Grundwahrheit f € H und eine beliebige Wahrscheinlichkeitsverteilung D
iiber X.

Satz 4.2. Es seien € > 0 und § > 0 beliebig und

mZmax{f,ilogQ <2H”5(2m))} . (1)

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemdf f gezogen unabhdngig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1 — 9, dass alle h € H
mit errg(h) = 0 auch errp f(h) < € erfiillen.

Um Satz 4.2 zu zeigen, beweisen wir zunéchst zwei Lemmata, die fiir sich genommen schon
interessante Aussagen sind. Erst im Anschluss werden wir sie zum Beweis des Satzes zusam-
menfiigen.

Wir halten zunéchst fest, dass es eigentlich gar nicht mal sehr wahrscheinlich ist, dass eine
feste Hypothese mit groflem tatséchlichen Fehler auch ,,typischerweise” einen groflien Trainings-
fehler hat.

Lemma 4.3. Sei h eine Hypothese mit errp ¢(h) > € und sei S’ eine Menge von m zufillig
gezogenen Samples. Falls m Bedingung (1) erfillt, dann gilt Pr [errs/(h) > %] > %

Beweis. Wir kénnen uns das Zufallsexperiment vorstellen als m unabhéngige Miinzwiirfe, wobei
die Wahrscheinlichkeit fiir Kopf p := errp f(h) > € in jedem Wurf betrégt. Wir behaupten, dass

wir mit Wahrscheinlichkeit mindestens % mindestens §m mal Kopf sehen.
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Sei dazu Z die Anzahl Kopf in den Miinzwiirfen. Es gelten E [Z] = pm und Var[Z] =
p(1 — p)m. Wegen p > e gilt also nach der Tschebyschew-Ungleichung

cp=pm _ 41 -p)

(m)”  #m

IN

Pr|z < m| <Pr|z<im| <Pr[Zz-E[z)| > im| < \(Z;E)Z?

wobel wir im letzten Schritt m > % und deshalb pm > em > 8 benutzen. L]

Die néichste Aussage ist, dass es, wenn zwei Sample-Mengen gezogen werden, eher unwahr-
scheinlich ist, dass es eine Hypothese gibt, die auf der einen Menge einen groflen und auf der
anderen Menge keinen Trainingsfehler hat.

Lemma 4.4. Seien S und S’ Mengen von m zufillig gezogenen Samples. Falls m Bedingung
(1) erfallt, dann gilt

und errg(h') = 0| < 0 .

Pr |3h' € H : errg/(h') > 5

DN

Beweis. Wir beschreiben einen anderen aber fquivalenten Weg, um S und S’ zu bestimmen:
Wir ziehen 2m mal aus der Verteilung D; sei das Ergebnis T'. Jetzt ziehen wir m mal ohne
Zuriicklegen aus T und nennen das Ergebnis S. Schliellich ist S” der Rest aus T also S" = T'\ S.
Betrachte nun eine feste Menge 7' und festes b’ € H. Sei h/(x) # f(z) fiir genau k Elemente
aus T'. Die einzige Art und Weise, wie errg/(h') > § eintreten kann, ist dass k > $m.
Dariiber hinaus ist die Wahrscheinlichkeit, dass A’ keinen Fehler auf S macht gegeben als

2m—k 2m—k—1 m—k+1
2m 2m —1 T o om+1
mm—1)...(m—k+1)

= EmEn =1 @ kD <%

Pr [errs(h') =0 ‘ T] -

Hierbei gilt die zweite Gleichung, weil sich die alle Faktoren aus dem Zihler und dem Nenner
kiirzen bis auf die ersten k im Nenner und die letzten k£ im Zahler.
Das bedeutet, dass fiir festes ' und festes T

£ e
T}<{O fallsk<2m}§22m'

/ /
= ’ > >
Pr |errg(h') = 0 und errg/ (h') 2=k sonst

€
2

An dieser Stelle kommt die Wachstumsfunktion ins Spiel: die Menge T hat nur Grofle 2m.
Das bedeutet, weil nur die Funktionswerte von k' auf T' wichtig sind, dass es effektiv hichstens
I13;(2m) unterschiedliche Wahlen fiir h gibt. Deshalb gibt uns die Union Bound jetzt

c 0
Pr (30 € H :errg(h') = 0 und errg/(h') > % ‘ T} < Ty (2m)27 2" < 3
Diese Schranke gilt fiir alle bedingten Wahrscheinlichkeiten, egal welche Menge T wir nutzen.

Also gilt sie auch fiir die unbedingte Wahrscheinlichkeit. O

Beweis von Satz 4.2. Wir werden nun die Lemmata zusammenfiigen. Sei A das Ereignis, dass
es ein h € H gibt mit errp(h) > € aber errg(h) = 0. Wir mochten zeigen, dass Pr [A] < 4.

Um Lemma 4.4 anzuwenden, fithren wir ein Hilfsereignis B ein. Sei dafiir S’ eine andere
Menge von m Datenpunkten mit zugehorigen Labels, die auch unabhéngig aus D gezogen sind.
Sei B das Ereignis, dass es ein b/ € H gibt mit errg/(h') > § aber errg(h’) = 0. Geméf
Lemma 4.4 gilt Pr [B] < 3.
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Dariiber hinaus behaupten wir, dass Pr [B | A] > % Dafiir sollten wir verstehen, was diese
bedingte Wahrscheinlichkeit bedeutet. Ereignis A ist bereits eingetreten. Dieses hidngt von der
Menge S ab und sagt, dass es ein h € H mit errp(h) > € aber errg(h) = 0. Damit Ereignis
B eintritt, ist es nun hinreichend, dass errg/(h) > 5. (Es ist nicht gefordert, dass h = A’ ist,
deshalb ist dies nur hinreichend aber nicht notwendig.) Nun kénnen wir Lemma 4.3 nutzen. Die

Wahrscheinlichkeit, dass fiir genau dieses h gilt errg/(h) > § ist mindestens %

Nun nutzen wir Pr [B] > Pr [B | A] Pr [A], um Pr [4] < PP;I[;[;TL] zu erhalten. Mit Pr [B]

<
% und Pr [B | A] > 1, folgt also Pr [4] < 4. O

3 Der Nicht-Realisierbare/Agnostische Fall

Bislang haben wir im Kontext von PAC-Learning nur den realisierbaren Fall behandelt. Das
bedeutet, es gibt nicht nur eine Grundwahrheit f: X — {—1,+1}, die die korrekten Labels
angibt, sondern auch, dass f in der Hypothesenklasse H enthalten ist, die wir betrachten.
Dies bedeutet insbesondere, dass es immer moglich ist, eine Hypothese zu finden, die keinen
Trainingsfehler hat.

In typischen Fragen des Maschinellen Lernens ist diese Annahme jedoch eigentlich nie
erfiillt. Die Merkmale beschreiben niemals die Wirklichkeit vollsténdig. Im Fall von Spam-
Klassifikation mogen als Merkmale Worthaufigkeiten, IP-Adressen, Daten im Header und so
weiter zur Verfiigung stehen. Auf Basis dieser Information ist es aber unmoglich, alle E-Mails im-
mer korrekt zu klassifizieren. Etwas philosophischer kann man sich auch fragen, ob es iiberhaupt
eine klare Trennung zwischen Spam und erwiinschten E-Mails gibt. Schliellich gibt es noch einen
weiteren Aspekt: Selbst wenn es moglich wire, eine Hypothesenklassen anzugeben, die eine per-
fekte Klassifikation ermo6glichen wiirde, méchte man aus Effizienzgriinden vielleicht eine weniger
komplexe Klasse wéhlen.

Wie modellieren wir also Lernprobleme jenseits des realisierbaren Falls? Betrachten wir
zunéichst das linke Beispiel von Abbildung 1. Hier ist X = [0,1]? und es gibt in der Tat eine
Grundwahrheit f: X — {—1,+1}, die allerdings relativ komplex ist. Nun kénnte H die Menge
aller linearen Klassifikatoren sein, das heifit, die Funktionen, die durch eine Gerade positive
und negative Punkte trennen. In einem solchen Fall kénnten wir weiterhin den tatséchlichen
Fehler errp ¢(h) einer Hypothese h hinsichtlich einer Verteilung iiber Datenpunkte D und der
Grundwahrheit f definieren als

errp ¢(h) := Pryp [h(x) # f(x)] .

Falls f ¢ H ist, ist es nun aber nicht mehr moglich, dass errp ¢(h) beliebig klein wird.

Das rechte Beispiel ist komplexer. Hier gibt es keine Grundwahrheit. Es konnte beispielsweise
sein, dass im Datenpunkte im grauen Bereich mit Wahrscheinlichkeit 50 % positiv und sonst
negativ sind. Hierfiir schauen wir uns Wahrscheinlichkeitsverteilungen iiber X x {—1,+1} an.
Das heifit, diese Verteilung liefert einen zufiilligen Datenpunkt mit Label. Aquivalent kénnten
wir auch wieder eine Verteilung iiber unbeschriftete Datenpunkte haben und dann fiir jeden
von diesen eine Wahrscheinlichkeit eines positiven Labels.

Der tatséchlichen Fehler errp(h) einer Hypothese h hinsichtlich einer solchen Verteilung D
iiber Datenpunkt-/Label-Paare ist definiert als

errp(h) == Pr(, y)~p [M(7) # Y]

In beiden Fillen haben wir keine Hoffnung, eine Hypothese zu finden, sodass der tatséchliche
Fehler beliebig klein wird. Stattdessen hoffen wir nun, méglichst nah an die bestmégliche Hy-
pothese zu kommen.
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Abbildung 1: Beispiele von nicht-realisierbaren Fillen. Links gibt es keinen Hypothese A in
unserer Klasse der linearen Separatoren, die mit der Grundwahrheit f auf allen Punkten
iibereinstimmt. Rechts sind im grauen Bereich die Labels zufillig; beispielsweise —1 oder +1
mit Wahrscheinlichkeit 50%. Es gibt also gar keine Funktion f: X — {0,1}, die immer das
korrekte Label zuriickgibt.

Definition 4.5. Eine Hypothesenklasse H ist PAC-lernbar (im agnostischen Sinn), wenn es
eine Funktion my und einen Lernalgorithmus gibt, der fir alle €,6 > 0 und jede Verteilung
D dber Datenpunkt-/Label-Paare mithilfe eines zufilligen Samples S der Griffe mindestens
my(€,0) aus D gezogen, eine Hypothese hg € H berechnet, sodass

Pr |errp(hg) < min errp(h') + €| > 14 .
heH

Agnostisch bezieht sich hierbei darauf, dass nicht bekannt, aber auch unerheblich ist, ob es
eine Grundwahrheit (in ‘H bzw. allgemein) gibt, oder nicht.
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Mehr zum Agnostischen Fall und Grenzen der Lernbarkeit

Thomas Kesselheim Letzte Aktualisierung: 8. Mai 2020

In der vergangenen Vorlesung haben wir die Definition von PAC-Lernen mit agnostischem
Sinn kennengelernt. Hier gibt es eine Verteilung D iiber Datenpunkt-/Label-Paaren, also iiber
der Menge X x {—1,+1}. Der tatséchliche Fehler einer Hypothese h is definiert als

errp(h) := Pr, p [h(z) # Y]

Es gibt im Allgemeinen keine Grundwahrheit f, die eine mégliche Hypothese ist. In diesem
Fall gilt auch ming ey errp(h’) > 0. Es ist somit nicht moéglich, dass der tatséchliche Fehler
eines Algorithmus verschwindet, egal wie viele Samples wir ihm bereitstellen. Stattdessen ist
das Ziel, moglichst nah an minys ¢y errp(h’) heranzukommen.

1 Minimieren des Trainingsfehlers im Agnostischen Fall

Gegeben eine Trainingsmenge S = {(z1,%1), - -, (Tm, Ym)} konnen wir den Trainingsfehler eine

Hypothese definieren als
1
errg(h) := EWL(%‘) # Yi| -

Wir kénnen uns nun Algorithmen anschauen, die diesen Trainingsfehler minimieren. Wihrend
dies im realisierbaren Fall bedeutet, dass kein Fehler auf S gemacht werden darf, ist dies nun
nicht immer moglich. Es ist nur das Ziel, moglichst wenige Fehler zu machen.

Fiir den agnostischen Fall kann man eine sehr dhnliche Aussage wie im realisierbaren Fall

herleiten, die die Wachstumsfunktion nutzt.

Satz 5.1. Seien eine H beliebige Hypothesenklasse iber X und D eine Verteilung tiber X X
{—1,41}. Seien € > 0, 6 > 0 beliebig und
32 <4HH(2m)>

Betrachte ein Sample S von m Datenpunkten mit Labels gezogen unabhingig und identisch
verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1 — 8, dass jede Hypothese h, die
errg(h) minimiert, auch errp(h) < ming ey errp(h’) + € erfiillt.

Insbesondere folgt aus dieser Schranke auch, dass eine Hypothesenklassen im agnostischen
Sinn PAC-lernbar ist, wenn ihr VC-Dimension endlich ist. Der Lernalgorithmus ist in diesem
Fall ein beliebiger Algorithmus, der den Trainingsfehler minimiert.

Viele Schritte im Beweis dieses Satzes sind analog zu seinem Pendant im realisierbaren Fall.
Um die Unterschiede und zusétzlichen Techniken zu verdeutlichen, betrachten wir nun den Fall
einer endlichen Hypothesenklasse H. Wir zeigen, dass fiir

m > 632111 <2|5H|> (1)

die Aussage von Satz 5.1 erfiillt ist. Hierzu beweisen wir folgende Behauptung.

Behauptung 5.2.
Pr |3h € H : lerrp(h) — errg(h)| > ; <6 .



AGML, Sommersemester 2020 Vorlesung 5 (Seite 2 von 4)

Diese Aussage hilft uns wie folgt. Angenommen, wir haben eine Menge S, sodass
lerrp(h) — errg(h)| < % fiir alle h € H. (2)

Das heifit, der tatséchliche Fehler und der Trainingsfehler sind nah bei einander fiir jede mégliche
Hypothese. Ist nun h eine Hypothese, die den Trainingsfehler errg(h) minimiert; k' eine Hypo-
these, die den tatséchlichen Fehler errp(h’) minimiert, dann gilt

errp(h) < errg(h) + % <errg(h') + g <errp(h') +e€ .

Fiir den Beweis von Behauptung 5.2 zeigen nun wieder zunéchst eine Aussage iiber eine
einzelne Hypothese.

Lemma 5.3. Betrachte eine feste Hypothese h € H. Sei S eine Menge von m Datenpunkt-
/Label-Paaren aus D. Dann gilt fir alle v > 0

Pr [lerrp(h) — errg(h)| > 1] < 2exp (—2m7?)

Beweis. Diese Aussage folgt einigermafien direkt aus der Hoeffding-Ungleichung. Diese lautet
wie folgt.

Lemma 5.4 (Hoeffding-Ungleichung). Seien Zy, ..., Zy unabhdngige Zufallsvariablen, sodass
a; < Z; < b; mit Wahrscheinlichkeit 1. Set Z = % Zf\;l Z; ithr Durchschnitt. Dann gilt fir alle
7=>0

2.2
Pr[|Z-E[Z]|>1] < 2exp <_N2M>
> im1 (bi — a;)?

Die Ungleichung quantifiziert (und verallgemeinert) das Gesetz der groflen Zahlen: Der
Durchschnitt vieler Ziige aus derselben Verteilung konvergiert gegen den Erwartungswert.

Fiir unsere Aussage sei Z; = 1, falls h(z;) # 3; und 0 sonst. Dann gilt Z = errg(h). AuBerdem
sind Zy, ..., Z, unabhingig und es gilt 0 < Z; < 1. Also kénnen wir die Hoeffing-Ungleichung
mit a; =0, b; = 1 and N = m anwenden.

SchlieBlich stellen wir fest, dass E [Z;] = errp(h) fiir alle ¢ und damit auch E [Z] =
LS E[Z] = errp(h). Die Aussage des Lemmas ist also genau die Schranke, die aus der
Hoeffding-Ungleichung folgt. O

Jetzt ist der Beweis von Behauptung 5.2 auch unkompliziert.

Beweis von Behauptung 5.2. Wir nutzen wieder die Union Bound and wéhlen v = § in Lem-
ma 5.3. Damit bekommen wir

2
Pr [Elh € H : |errp(h) — errg(h)| > % < |H|-2exp <—2m64> <J. O

2 Unendliche VC-Dimension

Wir haben bereits gesehen, dass jede Hypothesenklassen H endlicher VC-Dimension PAC-
lernbar ist. Aber was ist im Fall von unendlicher VC-Dimension? Beispielsweise die Klasse
aller Hypothesen N — {—1,+41}. Oder allgemeiner alle Funktionen X — {—1,+1}. Wie wir
zeigen werden, sind diese nicht PAC-lernbar.

Satz 5.5. Jede Hypothesenklasse von unendlicher VC-Dimension ist nicht PAC-lernbar im
realisierbaren Sinn.
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Um diesen Satz zu beweisen, miissen wir zeigen, dass Lernalgorithmus A und Funktion
myy aus der Definition von PAC-Lernbarkeit nicht existieren. Wir werden die folgende Aussage
zeigen.

Behauptung 5.6. Sei H eine Hypothesenklasse von VC-Dimension mindestens d. Dann gibt
es fiir jeden Lernalgorithmus A eine Verteilung D und eine Grundwahrheit f, sodass auf einer

Trainingsmenge S der Grifse hdochstens g gilt: errp(hg) > % mit Wahrscheinlichkeit mindestens
1

7.

Beweis. Laut Definition spaltet H eine Menge der Grofie d auf. Sei also T C X, |T| = d, eine
solche Menge. Es gilt nun |#|7| = 2%. Definiere k = 2% und schreibe H|p = {¢1,..., ¢}, wobei
jeweils ¢;: T — {—1,+1} und alle ¢; unterschiedlich sind.

Fiir jedes ¢; finden wir ein f; € H, sodass f;(z) = ¢;(x) fiir alle z € X. Jede dieser Funktionen
fi konnte die Grundwahrheit sein. Die entscheidende Beobachtung ist, dass wenn uns lediglich
ein Sample der Grofe % gegeben wird, wir fiir hochstens % Punkte in T das korrekte Label
wissen. Fiir die iibrigen Punkte konnen die Label vollkommen beliebig sein.

Betrachte nun einen festen Lernalgorithmus und als Verteilung D die uniforme Verteilung
auf T'. Sei hg; die Hypothese, die der Lernalgorithmus auf Sample S berechnet, wenn die

Grundwahrheit f; ist!. Wir méchten nun zeigen, dass

)

1 1
max Pr |:eI'I'D,fi(hS7Z‘) > 8] > -

Das heifit, dass es eine Grundwahrheit gibt, fiir die der Algorithmus schlecht ist. Definieren wir
nun Zufallsvariablen Z; (abhéngig von S), so dass Z; = 1 falls errp y,(hs;) > &, anderenfalls
Z; = 0.

In dieser Notation wollen wir zeigen, dass

maxPr [Z; = 1] >

)

=

Hierfiir ist es hinreichend, dass
k
1
- Y Pr(zi=1]>
i=1

| =

Da Pr [Z; = 1] = E [Z;], ist diese Aussage mittels Linearitit des Erwartungswertes dquivalent

zu
k
2.7
i=1

Betrachten wir ein festes x € T, dann gibt es fiir jede Hypothese f; genau eine Hypothese
f—i, die iiberall auf T mit f; tibereinstimmt, nur f;(z) # f_;(x). Falls x ¢ S, muss folglich gelten
hs;i = hs ;. Also muss entweder hg;(x) # fi(z) oder hg _;(z) # f—i(x) sein. Allgemeiner gesagt
bedeutet dies, dass fiir alle x ¢ S gilt, dass hg;(z) # fi(z) fiir genau die Hélfte aller 7.

Fiir jede feste Menge S mit |S| < 3|T| kénnen wir also schreiben

o

E >

? .

k
1 1T\ S| _ 1
- (hg;) > = >
? ;1 errp f,(hs;) > > I 2

W~ |

!Prinzipiell konnte hs; auch randomisiert sein. Der Beweis wiirde genauso gelten. Der Einfachheit halber
gehen wir aber davon aus, dass hs,; deterministisch von S und ¢ abhéngt.
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Wenn wir S durch ¢ Ziige aus D bestimmen, ist [T\ S| > |T.
Andererseits gilt auch

i=1

denn diejenigen ¢ mit Z; = 1 tragen hochstens 1, die {ibrigen héchstens % zu der Summe bei.
Folglich gilt also fiir jedes S immer

| &

k
> %z
i=1
Damit gilt die Ungleichung erst recht auch im Erwartungswert iiber S. O

3 Gesamtbild: PAC-Lernbarkeit

Zusammengenommen haben wir nun folgendes Bild von Implikationen.

(4) . . . .
‘H ist PAC-lernbar im realisierbaren Sinn ‘H ist PAC-lernbar im agnostischen Sinn

\& /
(3) (2)

‘H hat endliche VC-Dimension

Implikation (1) haben wir in den vergangenen Vorlesungen gezeigt. (2) folgt aus Satz 5.1,
den wir nicht bewiesen haben. (3) ist die Aussage von Satz 5.5. (4) ist eine Ubungsaufgabe.
Insgesamt sind also alle drei Begriffe dquivalent.

Dies bedeutet iibrigens nur, dass bei Hypothesenklassen mit endlicher VC-Dimension ,,ge-
niigend“ Samples fiir bei jeder Verteilung D ausreichen, um die beste Hypothese zu finden.
Es bedeutet nicht, dass ,geniigend“ im realisierbaren und im agnostischen Fall gleich grofe
Zahlen sind. Auch kann es bei Hypothesenklassen mit unendlicher VC-Dimension Verteilungen
D geben, die Lernbarkeit ermoglichen.
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Lineare Klassifikation

Anne Driemel Letzte Aktualisierung: 14. Mai 2020

Die lineare Klassifikation ist eine der grundlegendsten Methoden im Maschinellen Lernen.
Die entsprechende Hypothesenklasse H ist definiert als die Menge von Funktionen der Form
hap: RE— {—1,+1} mit a € R% b € R und?

hoo() +1 falls (a,z) > b
a,b\l) =
o —1 sonst

Wir konnen dies wieder dquivalent als Mengensystem beschreiben mit den Mengen
rmb:{xeRd ‘ <a,:z:>2b}

Die Menge 7, definiert einen Halbraum von R?. Ein Halbraum ist eine Menge, die durch
eine Hyperebene beschriankt ist. In unserem Fall ist das die folgende Hyperebene

Ez{xGRd ) <a,x>:b}

Im R? koénnen wir uns das geometrisch vorstellen. Die Hyperebene ¢ ist orthogonal zu der Ge-
raden g durch den Nullpunkt, die den Vektor a enthilt und schneidet diese Gerade im Abstand

zum Nullpunkt?. Der Halbraum rq, umfasst alle Punkte zu der Seite von £ die durch die

b
Tall
Richtung des Vektors a angegeben ist.

\/

b

|all

'Fiir Vektoren x = (z1,...,24) und y = (y1,...,ya) ist das Skalarprodukt definiert als (z,y) = Ele TiYi

Die Norm eines Vektors & = (21,...,xq) ist hier definiert als [|z|| = /> ", 22



AGML, Sommersemester 2020 Vorlesung 6 (Seite 2 von 6)

1 VC-dimension von Halbriaumen

Wir wollen heute die VC-dimension des Mengensystems aller Halbraume analysieren. Zunéchst
wollen wir dazu ein paar grundlegende Begriffe einfiithren.

Definition 6.1 (Affinkombination). Fiir beliebige Punkte py, . .., p, € R% und Parameter ay, ..., oy, €
R mit > jo; = 1 ist Y-, a;p; eine Affinkombination. Die Punkte p1,...,pn sind affin
abhingig wenn es einen Punkt p; gibt, sodass p; = 27}:1_ a;p;. Also genau dann wenn wir

JF#i
einen Punkt der Menge durch eine Affinkombination der anderen Punkte ausdriicken kinnen.
Die Menge aller Affinkombinationen einer festen Menge wird als ihre affine Hiille bezeichnet.

Eine Affinkombination ist also eine Linearkombination mit der zuséitzlichen Bedingung, dass
die Summe der Koeffizienten 1 ergibt. Mithilfe von Affinkombinationen lassen sich Geraden,
Ebenen und Hyperebenen darstellen.

Beispiel 6.2. Die Menge aller Affinkombinationen zweier Punkte p1,ps € R? ist
{tpi+1—t)p2 | teR}

Das ist die Menge aller Punkte auf der Geraden, welche p1 und py enthdlt.

Lemma 6.3. Jede Menge von d + 2 Punkten im R® ist affin abhdingig.

Beweis. Sei A = {p1,...,pa+2}. Setze ein beliebiges p; fest und betrachte fiir ¢ # j die d + 1
Punkte ¢; = p; — p;- Da d 4+ 1 Punkte linear abhéngig sind, existieren Parameter j3; fiir ¢ # j
und ein Punkt ¢, sodass

d+2
w= Y. Big
i#j ﬂjdl G
Somit gilt
d+2 d+2 d+2
pr=atpi=| D Big|+p= D Bpi—| D, Bil|pi+p
i#j ‘ljlj; G i#] ij{} G i#j ﬂjc} T
Jetzt konnen wir 8; = — Zd:%:; . Bj | + 1 definieren und somit haben wir 25%12 Bj =1
1#j und j#r JIFT

womit die Bedingung fiir eine Affinkombination erfiillt ist. O

Definition 6.4 (Konvexkombination). Fiir beliebige Punkte p1,...,p, € R? und Parameter
at,...,an € Rmit Yy oy =1 und a; >0 fiir allel <i<mnisty ;| c;p; eine Konvexkombi-
nation. Die Menge aller Konverkombinationen einer festen Menge wird als ihre konvexe Hiille
bezeichnet.

Beispiel 6.5. Die konveze Hiille von zwei Punkten py,ps € R? ist die Menge
{tpi+(1—t)p2 | t€0,1] }.
Das ist die Strecke mit Endpunkten p1 und ps.
Beispiel 6.6. Die konvexe Hiille von drei Punkten p1,p2,ps € R? ist die Menge
{aapr +opa+a3p3 | ar,az,a3>0unda;+as+a3=1}.

Das ist das Dreieck mit den Eckpunkten pi,ps und ps.
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1.1 Radon’s Lemma

Lemma 6.7 (Radon’s Lemma). Fir jede Menge A von d + 2 Punkten im R? existieren Teil-
mengen Ay, Ay C A mit A1 N Ay = () und ein Punkt q, sodass q sowohl als Konverkombination

von Ay dargestellt werden kann, als auch eine Konvexrkombination von As. Wir bezeichnen ¢
als Radonpunkt der Mengen A1 und As.

Beweis. Sei A = {p1,...,par2}. Da wir d+2 Punkte haben, sind diese affin abhéingig. Das heifit,
es gibt ein p; € A welches durch eine Affinkombination der anderen Punkte in A dargestellt
werden kann. Also existieren Parameter o fiir 1 < j < n mit ¢ # j, sodass

d+2 d+2
P = Zajpj mit Zaj =1
j=1 j=1
i#j i#j
Setzen wir nun «; = —1, dann kénnen wir a;p; auf beiden Seiten der Gleichung addieren und
bekommen
d+2 d+2

O:Zajpj mit Zaj:O.
j=1 j=1

Wir definieren nun zwei Indexmengen I1 ={¢ | a; >0 } und [r ={ i | a; <0 }. Durch
dquivalente Umformung bekommen wir

=Y pi=) aipp und =Y ai=> o

i€lq i€l i€l el

Setzen wir nun v =, ; «@;, dann definiert ¢ = >, Bip; mit §; = % eine Konvexkombi-

nation der Punkte in A mit Index in I;. Ahnlich definert qQ = Zie I Bip; mit §; = —¢ eine

Konvexkombination der Punkte in A mit Index in I5. Weiter ist ¢ = go und I; N Iy = (). Damit
ist der Satz bewiesen. ]

Beispiel 6.8 (Radonpunkt). Fiir 4 verschiedene Punkte a, b, c,d in der Ebene gibt es im Prinzip
zwei Moglichkeiten wie die Teilmengen in Radon’s Lemma zueinander liegen konnen.

b b
T ) c
| a
\ ®
\
\
\
d a d
(a) Ay ={a}, As = {b,c,d}. (b) A1 ={a,b}, Ay = {c,d}.
Ein Punkt a ist in der konvexen Hille Zwei Strecken ab und cd schneiden sich
der anderen Punkte {b, ¢, d} enthalten. in einem Punkt. Der Schnittpunkt

Hier ist a ein Radonpunkt. stellt einen Radonpunkt dar.
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1.2 Beweis der VC-dimension

Satz 6.9. Die VC-dimension von Halbriumen in R ist hochstens d + 1.

Beweis. Sei R das Mengensystem von Halbriumen in R%. Das heift, jede Menge in R ist von
der Form rgp = { r € RY ‘ (a,x) > b } mit a € R% b € R. Wir zeigen, dass die VC-dimension
hochstens d + 1 sein kann. Angenommen dem wiére nicht so. Wir fithren diese Annahme zu
einem Widerspruch. Sei A = {p1,...,p412} C R? eine Menge von d + 2 Punkten die durch
R aufgespalten wird. Laut Radon’s Lemma gibt es zwei disjunkte Teilmengen A;, Ao C A die
einen gemeinsamen Radonpunkt g besitzen. Das heisst, es gibt Konvexkombinationen

¢=> cip;und g= Y Bipi

i€l i€ls

wobei I; und Iy die Indexmengen von A; und As sind.
Sei r,p der Halbraum, der A; von A abspaltet. Dann ist

A = Tab M A und Ao N Tab = 0

also ist
(a,p;) > b fiir alle 1 € [

und
(a,p;) < b fiir alle i € Iy

Betrachten wir nun (a, ¢), so kénnen wir mit der ersten Konvexkombination unter Nutzung der
Linearitét des Skalarprodukts herleiten

(a,q) = <aazaipi> = Zai (a,pi) > Zaib =b

icly icly i€l

Die Abschétzung «; (a,p;) < ;b konnen wir natiirlich nur machen, da alle «; positiv sind. Die
letzte Gleichheit folgt aus der anderen Bedingung an die Konvexkombination, dass die Summe
der Koeffizienten gleich 1 ist. Ahnlich kénnen wir mit der zweiten Konvexkombination herleiten

(a,q) = <a7 Zﬁz‘pz'> = Zﬁi (a,pi) < Zﬁib =b

i€l 1€l i€l
Damit ergibt sich ein Widerspruch mit b > (a, q) > b. O

Geometrisch kann man sich den Beweis fiir die obere Schranke wie folgt veranschaulichen.
Laut Radon’s Lemma, gibt es zwei disjunkte Teilmengen A1, Ay C A, sodass die beiden konvexen
Hiillen von Ay und Ay nicht zueinander disjunkt sind. Ein Halbraum, der A; von A abspaltet
ist durch eine Hyperebene beschriankt, die A1 und As linear separiert. Die Hyperebene wiirde
dann aber auch die beiden konvexen Hiillen linear separieren.

Satz 6.10. Die VC-dimension von Halbriumen in R? ist mindestens d + 1.

Beweis. Wir zeigen, dass es eine Punktmenge mit d+ 1 Punkten gibt, die durch R aufgespalten
wird. Dafiir konstruieren wir eine Menge A C R? mit |A| = d + 1, die durch R aufgespalten
wird. Sei e; der Einheitsvektor, der iiberall 0 ist und nur an der iten Koordinate eine 1 hat. Wir
definieren als Menge A die d Einheitsvektoren und den Nullvektor ey = (0,...,0). Nun kénnen
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wir fiir jede Teilmenge A" C A zeigen, dass A’ abgespalten wird. Wir withlen a = (a1, ...,aq) €
R? und b € R wie folgt
1 falls e; € A, 0 falls eg € A’
a; = und b =
—1 sonst 1 sonst

Dann gilt (a,eq) =0 und fiir 0 <i < d
1 falls e; € A’
<CL, ei> =
—1 sonst
Durch eine Fallanalyse kann man nun zeigen, dass fiir alle e; € A gilt, dass
(a,e;) >b & e €A
Somit kann die Menge A’ immer durch einen Halbraum abgespalten werden. O

Beispiel 6.11. Im Beispiel von d = 2 kénnen wir exemplarisch Teilmengen von A = {ep,e1,e2}
aus dem obigen Beweis und die zugehdrigen Halbriume visualisieren.

= (17 _1)
=|0

(a) A" = {e1,ea} (b) A" = {eg,e1} (c) A" = {eo}

2 Homogene Halbriume

Sei Ry das Mengensystem aller Halbrdume der Form
Tw:{:EERd‘<w,$>ZO} mit w € R?

Wir bezeichnen Halbrdume dieser Form als homogene Halbraume.

Mit dem Mengensystem R sind auch allgemeine Halbriume im R?~! darstellbar. Insbeson-
dere koénnen wir eine Funktion ¢ : RY"! — R? definieren als ¢(z) = (21,...,24_1,1) und dann
existiert fiir jeden Halbraum

rayb:{mERdfl ‘ <a,a:>2b} mit o € R b e R
ein Halbraum r,,, € Rg sodass fiir alle z € R¢~1 gilt
TETey & Ox) €Ty
insbesondere konnen wir w = (ay, ..., aq—1, —b) wihlen damit dies erfiillt ist.

Beispiel 6.12. Fiir d = 2 kénnen wir uns diese Halbraume im konkreten Beispiel wie folgt
veranschaulichen. Sei a =1, b = —2, dann ist w = (1,2). Die Gerade, die den Halbraum ry, im
R? beschrinkt schneidet die horizontale Gerade bei y = 1 in der x-Koordinate ”f:’”. Die Punkte
auf der Horizontalen, die in ry, enthalten sind, entsprechen den Punkten in R, Jie inrep CR
enthalten sind.
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e Jiri MatousSek, Lectures on Discrete Geometry, Springer Graduate Texts in Mathematics.
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Lineare Klassifikation 11

Anne Driemel Letzte Aktualisierung: 11. Mai 2020

In der letzten Vorlesung haben wir die VC-dimension von Halbrdumen analysiert. Die ent-
sprechende Hypothesenklasse H ist definiert als die Menge von Funktionen der Form hy, , :
RY — {~1,+1} mit w € R% u € R und

g () = {+1 falls (w,x) > u

—1 sonst

Lernalgorithmen, die unter Annahme dieser Hypothesenklasse arbeiten, werden unter dem Be-
griff der linearen Klassifikation zusammengefasst.

Anhand der VC-dimension kénnen wir feststellen, dass eine Hypothesenklasse PAC-lernbar
ist. Ein anderer Aspekt ist die Berechnungskomplexitéit des Lernproblems. Zur Erinnerung, eine
Hypothesenklasse ist effizient PAC-lernbar, wenn sie mithilfe eines Polynomialzeitalgorithmus
A PAC-lernbar ist.

Wir widmen uns heute der Berechnungskomplexitdt der linearen Klassifikation. Sei S =
{(z®,yM), ... (™) y(™)} eine beschriftete Trainingsmenge mit z(*) = (l'gi), . .,mg)) € R?
und y® € {—1,+1}. Die Aufgabe des Lernalgorithmus ist es, Werte fiir w € R? und u € R zu
finden sodass der Trainingsfehler

% H ie{l,....,m} | hyu(z®) #£y® H
minimiert wird.

1 Realisierbarer Fall

Im realisierbaren Fall gehen wir davon aus, dass eine Hypothese mit Trainingsfehler 0 existiert.
Das entspricht dem Fall, dass die positive und die negative Menge durch eine Hyperebene
separierbar sind. In diesem Fall behaupten wir, dass eine solche Hypothese mithilfe linearer
Programmierung gefunden werden kann.

Ein lineares Programm bekommt als Eingabe eine Matrix A € R™*" und Spaltenvektoren
b € R™ und ¢ € R". Die Aufgabe ist es, einen Spaltenvektor v € R™ mit Av > b zu finden,
der (c,v) maximiert. Falls dies nicht moglich ist, dann gibt es zwei Moglichkeiten. Entweder
existiert kein v € R™ welches Av > b erfiillt, oder es existiert kein Maximum fiir (c,v) in der
Menge der v € R%, die Av > b erfiillen. Ein lineares Programm kann in polynomieller Zeit in
n,m und der Grofle der Koordinaten in A, b, ¢ geldst werden.

Satz 7.1. Im realisierbaren Fall kénnen wir in polynomieller Zeit in m, d und der Grifle der
Koordinaten eine Hypothese hyg o € H finden, die S korrekt klassifiziert (d.h. hg o(x") = y@ fiir
alle 7).

Beweis. Wir kénnen die Bedingung hwﬂ(:r(i)) =y wie folgt ausschreiben. Gesucht sind & € R?
und o € R, sodass fiir alle 1 <7 < m gilt:

(i) <1I),x(i)> > ¢ wenn y@ = +1, und

(ii) (w,2®) < @ wenn y® = —1
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Wir wollen nun schrittweise ein lineares Programm herleiten, um Werte fiir @ und @ zu
finden, die (i) und (ii) erfullt. Laut der Annahme im Satz existieren w und wu, welche diese
Bedingungen fiir w = @ und u = u erfiillen. Daraus folgt

max <w,x(i)> <u < min <w,x(i)> (1)
1<i<m 1<i<m
y(=—1 y( =11

wobei w und uw unbekannt sind. Da das Maximum auf der linken Seite {iber eine endliche Menge
gebildet wird, existiert ein «’' € R mit

max <w,x(i)> <u <u < min <w,az(i)>
1<i<m 1<i<m
y(=_1 y( =11

Also gilt fiir alle 1 < i < m, dass
Y <w,x<i>> > oDy

Weiter konnen wir die rechte Seite subtrahieren und bekommen

Y@ <w, $(i)> — @Dy >0
Es folgt, dass ein Wert v > 0 existiert, sodass fiir alle 1 <7 <m

Yy <w7 m(i)> — @Dy >
Das kénnen wir dquivalent umformen zu

<y<i>x<i>,w"> gDy > 1 2)

mit w” = £ und v’ = ¥.
Wir kénnen nun die Zeilen der Matrix A des linearen Programms definieren als (d + 1)-
dimensionale Zeilenvektoren

a; = (y D2,y @Dy

fir 1 <4 < m. Fiir b wéhlen wir den m-dimensionaler Spaltenvektor (1,...,1) und fiir ¢ den
m-dimensionalen Spaltenvektor (0,...,0).
Das lineare Programm findet dann ein v = (v1,...,v,) mit Av > b, sodass (¢, v) maximiert

wird. Dabei ist (c,v) = 0 fir alle v € R” und wir interessieren uns eigentlich nur fiir den ersten
Teil der Bedingung.

Laut unserem linearen Programm haben wir dann ein v, das (2) erfiillt mit v = (wf, ..., w}, u").
Durch unsere Herleitung aus w und w wissen wir, dass solch ein v existieren muss. Das heisst,
wir kénnen nun w” € R™ und u” aus den Koordinaten von v ablesen. Wir wihlen nun

w//

[l

w =

und
4 = min <u§,:z:(2)>
1<i<m
y( =11
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und geben diese zuriick als Losung. Tatséchlich klassifiziert die Hypothese hy 4 alle Punkte in
S korrekt, da

=

" (wi %) B aw w
wa\|| 1 -
[ Ll [l

w . v
w5

“ey

w =

und weil aus (1) folgt, dass auch

max i,x(i) < min i,x(i)
28\ T 2\ T

y(=_1 y( =11

gilt. O

2 Nicht-Realisierbarer Fall

Im nicht-realisierbaren Fall gehen wir nicht davon aus, dass die positive Menge und die ne-
gative Menge durch eine Hyperebene separierbar sind. In diesem Fall ist es NP-schwer einen
Halbraum zu finden, der den Trainingsfehler minimiert. Wir zeigen dies im speziellen Fall der
Hypothesenklasse Ho von Funktionen der Form h,, : R? — {—1,+1} mit w € R? und

ho(2) +1 falls (w,z) >0
w\T) =
—1 sonst

In der letzten Vorlesung hatten wir gesehen, dass diese Klasse, mithilfe einer Transformation
in einen hoherdimensionalen Raum, auch allgemeine lineare Klassifikatoren darstellen kann.

Wir zeigen die NP-Schwerheit des Lernproblems unter Hy mithilfe einer Reduktion von dem
folgenden NP-schweren Problem.

Definition 7.2 (MAX-E2-SAT). Gegeben eine Menge von m Klauseln iiber n booleschen Varia-
blen x1,...,x,, wobei jede Klausel genau zwei Literale (negierte oder nicht-negierte Variablen)
enthdlt. Finde eine Wahrheitsbeleqgung der Variablen, welche die Anzahl der erfillten Klauseln
mazximaiert.

Beispiel 7.3. Sei {(z1V x2), (71 V %2), (T2 V T3), (T1 V z3)} eine Menge von Klauseln. Eine
Wahrheitsbelegung, welche die Anzahl der erfillten Klauseln mazimiert, ist x1 = 1, xo = 0,
xs = 1. Diese Wahrheitsbelegung ist maximal, da alle Klauseln durch sie erfillt werden.

Satz 7.4 (Hastad). Falls P # NP, dann existiert kein polynomieller Algorithmus fiir MAX-
E2-SAT. (ohne Beweis)

Wir wollen aus dem Satz von Hastad folgern, dass auch das Lernproblem iiber Hgy NP-schwer
ist. Das heisst, wir wollen den folgenden Satz zeigen.

Satz 7.5. Fulls P # NP, dann existiert kein polynomieller Algorithmus, der ein h € Hy findet
welches den Trainingsfehler minimiert.

Gegeben sei eine Menge Z von m Klauseln iiber n Variablen z1,...,x, als Eingabe fiir das
MAX-E2-SAT Problem. Wir transformieren diese Eingabe in eine Eingabe Z’ fiir das Lern-
problem iiber Hy. Wir definieren fiir jede Klausel C einen Punkt ¢(C') € R™ mithilfe einer
Funktion

1falls z; € C
$;(C) =4 —1fallsz; € C

0 sonst
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Sei p(C) = (¢1(C), ..., pn(C)). Wir geben diesem Punkt ein positives Label.

Zusétzlich definieren wir fiir jede Klausel C' {iber Variablen z;, x; eine Menge von vier Punk-
ten {e;, e;, —e;, —e;}, wobei e; den Einheitsvektor von R" bezeichnet, der iiberall 0 ist, und nur
an der ¢ten Koordinate eine 1 hat. Wir geben diesen Punkten ein negatives Label und fiigen sie
in zweifacher Ausfiihrung hinzu. Die Klausel C' erzeugt also eine beschriftete Menge

@(O) = {(¢(C)7 +1)7 (61‘, _1)7 (eia _1)7 (€j7 _1)7 (6j7 _1)7 (—61‘, _1)7 (_6i7 _1)7 (_ej7 _1)7 (—6]‘, _1)}

Die Eingabe Z’ fiir das Lernproblem besteht nun aus der Vereinigung dieser beschrifteten
Punktmengen tiber alle Klauseln. Beachte, dass in der erzeugten Menge Punkte mehrfach vor-
kommen.

Definition 7.6. Sei h,, € Ho eine Hypothese mit w = (wy, ..., wy,). Wir definieren eine Funk-
tion o : R™ — {0, 1}"™ mit

0 sonst

{1 falls w; >0
ai(w) =

als a(w) = (ag(w),...,an(w)). Die Funktion bildet die Hypothese h,, auf eine Wahrheitsbele-
gung fir die Variablen x1, ...,z ab, indem wir x; = a;(w) setzen.

Sei h,, € H eine Hypothese, die den Trainingsfehler auf Eingabe Z/ minimiert. Wir behaup-
ten, dass a(w) die Anzahl der erfiillten Klauseln in Z maximiert. Um das zu zeigen, miissen wir
zunéchst ein paar strukturelle Eigenschaften unserer Konstruktion zeigen.

Behauptung 7.7. Wenn fir ein k > 0 eine Wahrheitsbelegung a € {0,1}" existiert, die
k Klauseln von T erfiillt, dann existiert ein h,, € Hgy, welches k + 4m Punkte in I' korrekt
klassifiziert.

Beweis. Dalfiir setzen wir

1fallsa; =1
w; =
—1fallsa; =0

Dann ist (w, ¢(C')) > 0 genau dann wenn die Wahrheitsbelegung a die Klausel C erfiillt. Das
lasst sich leicht durch eine Fallanalyse zeigen, die wir hier nicht ausfithren. Ferner werden genau
4 negative Punkte von ®(C') korrekt klassifiziert. Damit ist Behauptung 7.7 bewiesen. O

Beispiel 7.8. Sei C = (x; V T;), dann ist $;(C) = 1 und ¢;(C) = —1 und alle anderen
Koordinaten von ¢(C) sind gleich null. Das heisst, ¢(C) liegt in dem linearen Unterraum,
der durch die Einheitsvektoren e; und e; aufgespannt wird. Daher kénnen wir uns die vier
Hypothesen aus obigem Beweis, die den vier Wahrheitsbelegungen von x; und x; entsprechen,
wie folgt vorstellen:

(b) z; =0,z =1
(i vE;) =0
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Der Fall (b) ist die einzige Belegung, wo die Klausel nicht erfillt ist. Das ist auch der einzige
Fall, in dem ¢(C) nicht korrekt klassifiziert wird. Weiter ist die Anzahl der negativen Punkte,
die von hy, als negativ klassifiziert werden, immer genau 4m. Also werden genau k+4m Punkte
korrekt klassifiziert. Die anderen Klauseln konnen auf die gleiche Art analysiert werden.

Behauptung 7.9. Sei hy, € Ho mit w = (w1, ..., w,) € R" eine Hypothese, die den Trainings-
fehler minimiert, dann ist w; # 0 fir alle 1 <i <mn.

Beweis. Sei w; = 0 fiir eine Hypothese h,,. Sei C' eine Klausel iiber Variablen x; und z;. Dann
ist (w, e;) > 0, sowie (w, —e;) > 0. Gleichzeitig ist entweder (w,e;) > 0, oder (w, —e;) > 0. Da
diese Punkte in zweifacher Ausfithrung in ®(C) vorkommen, klassifiziert h,, also mindestens
6 Punkte von ®(C) falsch, also hochstens 3 Punkte korrekt. Gleichzeitig klassifiziert h,s mit
einem beliebigen w' = (w, ..., w;,) mit w} # 0 fiir alle 1 < j < n mindestens 4 negative Punkte
pro Klausel korrekt. Damit ist Behauptung 7.9 bewiesen. O

Behauptung 7.10. Sei hy,, € Ho mit w € R™ eine Hypothese, die den Trainingsfehler mini-
miert. Sei ¢(C) ein Punkt, der durch hy, korrekt klassifiziert wird, dann wird die Klausel C
durch a(w) erfiillt.

Beweis. Das kann wieder durch eine Fallanalyse gezeigt werden. Sei C' die Klausel (x; V x;).
Dann ist ¢;(C) = 1 und ¢;(C) = 1 und alle anderen Koordinaten sind gleich null. Daher gilt
fiir alle w € R™

(w,p(C)) >0 & wj+w;>0

Wir unterscheiden die folgenden Félle.

(a) (w; >0,w; >0 (x; =1,2; =1) = C ist durch a(w) erfiillt

(b) (w; >0,w; <0 (x; = 1,25 = 0) = C ist durch a(w) erfiillt

(©) (
)

) =
) =
w; < 0,w; >0) = (z; =0,2; = 1) = C ist durch o(w) erfiillt
(d) (w; <0,w; <0)=

(wi +w; < 0) = ¢(C) wird nicht korrekt klassifiziert

Wir konnen annehmen, dass w; # 0 und w; # 0, da sonst h, nicht optimal ist (Behaup-
tung 7.9). Somit ist die obige Fallanalyse fiir die betrachtete Klausel C' vollstéindig. Die anderen
Méglichkeiten fiir C' sind die Klauseln (z; V ), (Z; V x;), (Z; V Z;). In diesen Fillen kann die
Behauptung analog gezeigt werden, was wir hier nicht ausfithren. Damit wire Behauptung 7.10
bewiesen. O

Beweis von Satz 7.5. Wir kénnen nun alles zusammenfiihren und unseren Satz beweisen. Laut
Behauptung 7.7 existiert fiir jede Wahrheitsbelegung mit & erfiillten Klauseln von Z eine Hy-
pothese, die k + 4m Punkte in Z’ korrekt klassifiziert. Gleichzeitig folgt aus Behauptung 7.9
fiir jedes h,,, das den Trainingsfehler auf 7' minimiert, dass die Anzahl der negativen Punkte,
die durch h,, korrekt klassifiziert werden, gleich 4m ist. Wenn h,, also k 4+ 4m Punkte korrekt
klassifiziert, dann sind & Punkte davon positiv. Aus Behauptung 7.10 folgt dann, dass h,, eine
Wahrheitsbelegung a(w) impliziert, die mindestens k& Klauseln von Z erfiillt. Wenn es also eine
Wahrheitsbelegung gibt, die k Klauseln in Z erfiillt, dann gibt unsere Reduktion mithilfe eines
Lernalgorithmus fiir Z' eine Wahrheitsbelegung zuriick, die mindestens k Klauseln in Z erfiillt.
Gébe es also einen polynomiellen Algorithmus fiir das Lernproblem, dann géibe es auch einen
polynomiellen Algorithmus fiir MAX-E2-SAT. Damit folgt Satz 7.5 aus Satz 7.4. O
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Support Vector Machines und Konvexitat

Thomas Kesselheim Vorschau Letzte Aktualisierung: 18. Mai 2020

Wie auch in den vergangenen Vorlesungen werden wir uns heute wieder mit linearer Klassi-
fikation beschéftigen. Wir erinnern uns, dass die Hypothesenklasse H definiert ist als die Menge
von Funktionen der Form Ay ,: RY — {—1,+1} fiir w € R? und u € R und

o (x) — {—H falls (w,x) > u

—1 sonst

Hierbei beschreibt (w, x) das Skalarprodukt der Vektoren w und x. Wir nehmen auch wieder an,
dass uns eine Trainingsmenge S von Datenpunkten mit Labels (x1,91), ..., (Xm, ym) gegeben
ist.

Wie wir in der letzten Vorlesung gesehen haben, kénnen wir in Polynomialzeit eine Hypo-
these berechnen, die alle Datenpunkte in .S korrekt klassifiziert, sofern dies moéglich ist. Gleich-
zeitig gibt es unter der Annahme P # NP keinen Polynomialzeitalgorithmus, der die maximale
mogliche Anzahl von Punkten korrekt klassifiziert.

Beide Probleme werden wir heute erneut betrachten. Wir werden Probleme formulieren,
deren Ziel es ist eine ,moglichst gute“ Hypothese zu berechnen, und die gleichzeitig Poly-
nomialzeitalgorithmen zulassen. Die Algorithmen selbst werden wir dann in den kommenden
Vorlesungen besprechen.

1 Hard-SVM-Problem

Das Ziel beim Hard-SVM-Problem ist es, eine Hypothese hw ., zu finden, die alle Datenpunkte
in S richtig klassifiziert unter der Annahme, dass das moglich ist. In anderen Worten sollen die
positiven von den negativen Punkten linear separierbar sein. Zusétzlich sollen die Datenpunkte
moglichst deutlich klassifiziert werden. Das bedeutet, dass der Abstand von der Hyperebene, die
durch w und wu definiert wird, moglichst grof} sein soll. Anders formuliert soll die Hypothese auch
noch moglichst lange korrekt bleiben, selbst wenn die Punkte in ihrer Umgebung verschoben
werden.

Leiten wir nun zunéchst eine Formel fiir den Abstand von einer Hyperebene her. Zur Erinne-
rung: Der Abstand zweier Punkte v und v’ ist definiert als die Norm der Differenz der Vektoren
|v — v/||. Wir betrachten im Folgenden nur die euklidische Norm, definiert als ||v]| = \/(v, V).

Lemma 8.1. Der Abstand eines Punktes x von einer Hyperebene definiert durch (w,u) ist
L l(w, %) — ul.

Beweis. Wir definieren einen Punkt v = x — cw mit ¢ = W«W,}Q — u). Nun werden wir

nachweisen, dass v (i) in der Hyperebene liegt, (ii) den besagten Abstand von x hat und (iii)
kein Punkt der Hyperebene ndher an x liegt.
Fiir (i) setzen wir die Definition v ein und erhalten

(w,v) = (w,x —cw) = (W, X) — c(w,w) = (w,x) —c|w|* =u .

Also erfiillt v die Hyperebenegleichung.



AGML, Sommersemester 2020 Vorlesung 8 (Seite 2 von 5)

Fiir (ii) nutzen wir ebenfalls die Definition von v und elementare Umformungen. Dies gibt
uns

1 1
[x = vl = llew| = lel[|w]| = | 7—5 (W, %) —w)| [W] = -— [{W, %) — ul
[wi? gl

Fiir (iii) betrachten wir nun irgendeinen anderen Punkt v’ auf der Hyperebene. Das Quadrat
dessen Abstands zu x berechnet sich zu

Ix—V/[12 = [lx—vAv—v'|2 = x|+ [V 242 (x = v,v = V') = [x—v]+2 (x = v,v = V')

Es bleibt also nur zu zeigen, dass (x — v,v — v’) > 0. Aufgrund der Definition von v ist x —v =
cw also

(x=v,v=v)=(cw,v-v)=c((w,v) = (w,v)) =c(—u+u)=0 .
Hierbei haben wir ausgenutzt, dass sowohl v als auch v/ auf der Hyperebene liegen. O
Wir wollen nun eine Hyperebene finden, die alle Punkte (x1,91), ..., (Xm, Ym) korrekt klas-

sifiziert und auflerdem unter diesen Hyperebenen den minimalen Abstand zu den Punkten ma-
ximiert. Dies kénnen wir nun als ein Optimierungsproblem aufschreiben

maximiere mln (W, x;) — ul

|
[w

unter den Nebenbedingungen (w,x;) —u >0 falls y; = 1
(W,x;) —u <0 falls y; = —1

Eine optimale Losung zu dieser Formulierung zu finden ist nicht einfach. Die Nebenbedingungen
sind zwar linear, aber die Zielfunktion ist kompliziert. Deshalb schreiben wir das Problem leicht
um.

Zunéchst einmal stellen wir fest, dass wir mittels der Nebenbedingungen die Betragsstriche
in der Zielfunktion eliminieren kénnen. Egal ob y; = 1 oder y; = —1, gilt immer |(w,x;) — u| =
yi((w,x;) — u). So lautet unser Problem nun

- 1
maximiere min ——y; ((W,X;) — u)
i wl
unter den Nebenbedingungen (w,x;) —u >0 falls y; = 1
(W,x;) —u <0 falls y; = —1

Betrachten wir nun eine optimale Losung (w, u), stellen wir fest, dass niemals (w, x;) —u = 0
fiir ein 7 sein wird, weil wir ansonsten u leicht erhthen kénnten. Dies wiirde den Zielfunktionswert
nur verbessern und die Losung wiirde weiter giiltig bleiben. Auflerdem erfiillt jede Losung mit
positivem Zielfunktionswert automatisch alle Nebenbedingungen. Somit vereinfacht sich das
Problem dahingehend w und u zu finden, sodass

1
mln ||WH yi((w,x;) — u)

maximiert wird.
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Gegeben eine optimale Losung (w, u), sei nun v = min; y;((w, x;) — u). Betrachte w’ = %W,

u = %u Wir stellen fest, dass

1 , , v << w > u) 1

Toyi((Whxi) —u) =y | (—axi ) — = ) = —rui((w,xi) — u)

O =) = e (%) =5

fiir alle 4. Also hat (w’,u') denselben Zielfunktionswert wie (w,u), ist also auch eine op-

timale Losung. Wir konnen also genauso gut auch (w’,u’) suchen. Weil bei dieser Losung
min; y;((w', x;) — ') = 1, ist dies gleichbedeutend mit

minimiere ||w’||?

unter den Nebenbedingungen yi(<w', XZ'> —u')>1 fiir alle 7

Diese Formulierung heifit Hard-SVM. In der Tat werden wir Algorithmen kennenlernen, die
ein solches Optimierungsproblem l6sen kénnen.

2 Soft-SVM-Problem

Die Ergebnisse in Abschnitt 1 setzen voraus, dass die Punkte linear separierbar sind. Das heift,
dass es eine Hypothese gibt, die alle Punkte in der Menge S korrekt klassifiziert. Um den Trai-
ningsfehler zu minimieren, miisste man eine Hypothese finden, die moglichst viele Datenpunkte
korrekt klassifiziert. In der Notation, die wir nun eingefiihrt haben, bedeutet dies, dass die Be-
dingung y; ((w,x;) +u) < 1 fiir moglichst wenige i nicht erfiillt ist. Wie wir bereits in der letzten
Vorlesung gesehen haben, ist dies jedoch NP-schwer.

Der Soft-SVM-Ansatz ist daher ein anderer. Wir fithren bei jeder Nebenbedingung eine
Variable £ ein, wie weit sie verletzt ist. Das heift, wir fordern nun noch, dass y;((w,x;) —u) <
1 —¢&;. Es ist nun auch das Ziel, den durchschnittlichen Fehler zu minimieren.

Die neue Formulierung lautet somit

L 1 &
minimiere \||w]|? + - Z;fl
—
unter den Nebenbedingungen y; ((w,x;) —u) > 1 —¢; fiir alle 4

& >0 fiir alle ¢

Hierbei driickt A > 0 eine Gewichtung aus: |[w||? ist der Term, der urspriinglich ausgedriickt
hat, dass der Abstand moglichst grof sein soll; % o, & ist der durchschnittliche Fehler, der
misst, wie weit Punkte jeweils auf der falschen Seite der Hyperebene sind.

Dieses Problem koénnen wir noch umformulieren. Wir nutzen aus, dass in einer optimalen
Losung immer §; = max{0,1 — y;({w, x;) — u)} sein wird. Damit ist es dquivalent,

1 m
Alwl+ = z; max{0, 1 — y;((w,x;) — u)}
P
7zUu minimieren.

3 Konvexe Optimierung

Das Hard-SVM- und das Soft-SVM-Problem lassen sich wie folgt darstellen. Wir mochten eine
Funktion f:.S — R minimieren, wobei S C R" die Menge aller zuldssigen Losungen darstellt.
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Abbildung 1: Links eine konvexe Menge, rechts eine nicht-konvexe Menge.

In unserem Fall enthélt S alle (d + 1)-dimensionalen zuléissigen Vektoren (w,w). Das heifit,
wir fiigen unter die d Komponenten von w mit w einer weitere Komponente an. Im Fall von
Soft-SVM gibt es keine weiteren Einschrankungen, also ist S = R™ mit n = d + 1. Im Fall von
Hard-SVM miissen mittels S die Nebenbedingungen beriicksichtigen.

Gliicklicherweise sind sowohl die Menge S als auch die Funktion f konvex. Deshalb werden
wir die Probleme mithilfe von Algorithmen aus der Konvexen Optimierung l6sen kénnen.

Die Menge S ist jeweils konvex. Das heifit, dass fiir zwei Punkte u, v € S alle Punkte auf der
Verbindungslinie wieder in S enthalten ist (siche Abbildung 1). Formal also Au+ (1 — A\)v € S
fiir alle A € [0, 1].

Zusétzlich ist auch die Funktion f konvex. Das bedeutet, dass der Funktionsgraph zwischen
zwel Punkten jeweils unterhalb der Verbindungslinie dieser beiden Punkte liegt. Das heif3t, fiir
u,veSglt fAu+ (1 —=A)v) < Af(u) + (1 — N)f(v) fiir alle A € [0,1]. Ein typisches Beispiel
einer konvexen Funktion, das man immer im Kopf haben sollte, ist eine quadratische Funktion
in einer Dimension (siehe Abbildung 2 links).

Wenn die Funktionen differenzierbar sind, gibt es viele dquivalente Definitionen von Konve-
xitdt. Betrachten wir zunéchst den eindimensionalen Fall. Hier muss beispielsweise die zweite
Ableitung nicht-negativ sein. Im Kontext von Konvexer Optimierung werden wir jedoch folgende
dquivalente Definition nutzen: Die Funktion fallt niemals unterhalb ihre Tangenten. Ausgedriickt
in der ersten Ableitung bedeutet dies, dass eine differenzierbare Funktion f: S — R konvex ist,
wenn fiir alle u,v € S gilt

flu) = f(0) + f'(0)(u—v) .

Abbildung 2: Typische konvexe Funktionen in einer bzw. zwei Dimensionen, jeweils mit einer
Tangente bzw. Tangentialhyperebene in rot.
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All diese Definitionen lassen sich auch ins Mehrdimensionale iibertragen. Die Funktion f
hat nun einen Gradienten Vf, der der Vektor aller partiellen Ableitungen ist; (Vf(u)); =
8%(u). Eine differenzierbare Funktion f: .S — R" ist konvex, wenn sie niemals unter ihre

Tangentialhyperebene fillt (siehe Abbildung 2 rechts). Das heifit, dass fiir alle u, v

fu) =2 f(v) +(Vf(v),(a=V)) . (1)

Die Soft-SVM-Zielfunktion ist nicht differenzierbar. Trotzdem erfiillt sie eine dhnliche Be-
dingung, wie wir sehen werden.

Wir werden nicht nachweisen, dass die Hard- und Soft-SVM-Zielfunktionen konvex sind. Dies
folgt aus relativ einfachen Rechnungen. Folgende Abschlusseigenschaften sind dabei hilfreich.

Lemma 8.2. 1. Sind f und g konvez, dann sind auch f + g und max{f, g} konvez.
2. Ist f konver und a > 0, dann ist auch af konvex.

3. Sind f und g konvex und g zusdtzlich monoton steigend, dann ist auch g o f konvex.
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Gradient Descent

Thomas Kesselheim Letzte Aktualisierung: 22. Mai 2020

In der letzten Vorlesung haben wir in Form von Hard- und dem Soft-SVM-Problem bereits
zwei konvexe Optimierungsprobleme kennengelernt. Im Maschinellen Lernen gibt es eine Viel-
zahl weiterer derartiger Probleme. Heute werden wir diskutieren, mit welchen algorithmischen
Ansétzen man sie 16sen kann.

Allgemein ist ein konvexes Optimierungsproblem wie folgt definiert. Wir miissen eine kon-
vexe Funktion f:S — R minimieren, wobei S C R™ die (konvexe) Menge aller zuldssigen
Losungen darstellt. Wir beschrinken uns auf den Fall, dass S = R"™. Das heifit, es gibt keine
Nebenbedingungen.

Zunéchst beschrianken wir uns auf differenzierbare Funktionen f. Spéter werden wir je-
doch unsere Ergebnisse verallgemeinern, dass sie auch mit nicht-differenzierbaren Funktionen
anwendbar sind.

1 Gradienten

Betrachten wir zunéchst eine differenzierbare Funktion f. Folglich hat sie einen Gradienten V f,
der der Vektor aller partiellen Ableitungen ist; (Vf(u)); = 3%(“)‘ Konvexitdt von f ist nun
dquivalent dazu, dass fiir alle u, v

fa) = f(v) +(Vf(v),(u=V)) . (1)
Zum Versténdnis dieser Ungleichung ist es hilfreich zu verstehen, dass
u— f(v) +(Vf(v), (u—-v))

die lineare Approximation von f durch die Tangentialhyperebene an der Stelle v ist. Das heifit,
eine konvexe Funktion muss jeweils oberhalb der Tangentialhyperebene liegen.

Abbildung 1: f: R? = R mit f(z1,22) = 22 + 23 und die Tangentialebene an (1, 1).
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Beispiel 9.1. In Abbildung 1 ist die Funktion f: R? — R mit f(x1,z2) = 22 + 23 und die Tan-
2.%'1

gentialebene an f an (1,1) dargestellt. Der Gradient ist V f(x1,x2) = < 9
2

> , entsprechend

ist die Tangentialebene an (1,1) gegeben durch
ul—>2—|—2(u1—1)+2(u2—1) .

Abbildung 2 zeigt eine andere Darstellung einer Funktion f: R? — R als Relief-Plot. Hier
sehen wir Hohenlinien der Funktion eingetragen, also Mengen von Punkten, an denen die Funk-
tion denselben Wert hat. Der Gradient im Punkt x steht immer senkrecht zur Hohenlinie im
Punkt x der Funktion. Er zeigt in die Richtung des stérksten Anstiegs

2

I T
2

%

|
\

1.5}

1\,

o5~

0.5 \_1 ]
\2/

07 34 3‘7\ H

—0.5| s -
IQ\ ! 10—

|
-1 -05 0 05 1 15 2

Abbildung 2: Links ein 3D-Plot, rechts ein Relief-Plot mit Hohenlinien der konvexen Funktion
f: R? — R definiert durch f(z1,z2) = (z1 — 1)® + 3(z2 — 1)%.

2 Gradient Descent

Der Algorithmus Gradient Descent berechnet eine Folge von Lésungen w) ... w(). Wir
beginnen mit w(!) = 0. Die Losung w(tt1) ergibt sich jeweils aus einer leichten Verbesserung
von w(t),

Betrachten wir hierfiir den Gradienten g(t) := V f (W(t)) von f an der Stelle w(®). Weil der
Gradient in die Richtung des stiarksten Anstiegs zeigt, miissen wir uns in die entgegengesetzte
Richtung, also —g® bewegen, denn dies ist die Richtung des stirksten Abfalls. Dies fiihrt zur
Regel

wltt) = w® _ gt

Dabei ist 1 (ausgesprochen: eta) ein Parameter des Algorithmus. Wenn wir 7 zu klein wéhlen,
machen wir keine guten Fortschritte. Wenn wir 7 zu grofl wéhlen, schieffen wir moglicherweise
iiber das Ziel hinaus.

Nach einer festen Anzahl von Iterationen T geben wir die beste gesehene Losung zuriick.!

! Alternative Formulierungen des Algorithmus geben einen Durchschnitt iiber alle Losungen oder die letzte
erreichte Losung zuriick.
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Abbildung 3: Beispiel von Gradient Descent auf f(x1,22) = (71 — 1)? + 3(z2 — 1)?, links mit
7 = 0.3 mit Konvergenz, rechts mit 7 = 0.4 ohne Konvergenz.

3 Analyse von Gradient Descent

Wir koénnen nun zeigen, dass der Algorithmus sich tatséchlich einer optimale Losung annéhert.

Satz 9.2. Gilt |g®| < p fir alle t, dann gilt fir alle w* € R™ mit |w*|| < B
mtinf(W(t)) < fwh) + T +5 -

Insbesondere gilt fiir n = p%

min f(w) < f(w) + == .

Insbesondere kénnen wir natiirlich w* als die optimale Losung wéhlen und erhalten damit
einen additiven Fehler von hochstens % unter den genannten Bedingungen. Wichtig ist an

dieser Stelle, dass der Fehler immer kleiner wird je grofier T', also die Anzahl der Iterationen,
wird. Die Bedeutungen von B und p werden wir spéater noch diskutieren.

Beweis. Den besten gesehenen Funktionswert konnen wir abschéitzen durch den durchschnittlich
gesehenen Funktionswert

T
. * 1 *
min (f(w®) = f(w")) < = > (Fw®) = p(w) (2)
Nun folgt der einzige Schritt, in dem wir Konvexitit nutzen. Geméfl dieser gilt fiir alle ¢

Fw) = fw) + (g, wr —wl®) . (3)

Also gilt
Fw ) = fw*) < (g9, W —w)

Dieses Skalarprodukt driicken wir nun in einer Summe von Vektornormen aus. Es gilt
namlich fir alle u, v, dass
(utv,utv)=lutv|?,
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aber auch
(Wt v,utv) = (uu) + (v,u) + (0, v) + (v, v) = [ul]? + [|v]* + 2 (u,v) .
Zusammengenommen also

(,v) = 2 (JJu+ v —[lul® = v]?) .

N =

Mittels der Gleichung kénnen wir nun schreiben

* 1 * *
(W —w,—ng®) = = (Iw?) = w* =g  [w® — w2~ |-ng®|?) .

Wir kénnen nun w(tt!) = w® — pg(®) cinsetzen. Zusétzlich teilen wir die Gleichung durch —7.
Somit ergibt sich

<g<t>’w<t> _ W*> _ _717 <w(t) —w, —ng(”>

1
- (t4+1) _ *(12 ®) w2 | )12
2 (Ilw w7 = [|w = w*||* = [|-ng II)
1
_ (t) _ o*2 (t+1) (2 M@ 2
gy (I = w7 = D —we2) 4 Jg )

Als Teleskopsumme ergibt sich damit fiir (2) zusammen mit (3)
1 T n T
> (Fw®) = fw)) < 52 30 (W = w2 = w0 —w)2) + 23 g2
t=1 t=1
T
g
t=1

t=1 277

1
_ (1) o2 (T+1) o |2 n )12
o (Iw = w2 — fjw W)+ 5l -

3

Mit w) =0 und [|[wT+D) — w*||2 > 0 kénnen wir also abschétzen

T
S () = £w) < 5w 1P+ 3 e

t=1 t=1

Insgesamt erhalten wir damit

B2 2
i @)y — N <« 2 1P
mtln<f(w ) f(w)>—2nT+ 2
Und mit n = p% gilt nun miny (f(w(t)) — f(w*)) < 37;, ]

4 Nicht-Differenzierbare Funktionen

Ist eine Funktion nicht differenzierbar, so gibt es nicht an jeder Stelle v einen Gradienten
Vf(v). Somit ist auch die Tangentialhyperebene nicht (eindeutig) definiert. In Abbildung 4
ist die Betragsfunktion dargestellt. An der Stelle 0 ist sie nicht differenzierbar. Es gibt nun
eine Vielzahl von Tangenten, die wir an dieser Stelle anlegen kénnen. Die Abbildung zeigt zwei
Beispiele.
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Abbildung 4: Die Betragsfunktion mit zwei moglichen Tangenten an der Stelle 0. Die Funktion
liegt oberhalb von allen diesen Tangenten.

Wir erinnern uns, das Konvexitdt bei differenzierbaren Funktionen f &dquivalent dazu ist,
dass fiir alle u, v

fa) = f(v) +(Vf(v),(a=V)) .

Diese Ungleichung haben wir fiir die Analyse von Gradient Descent genutzt.

Fir allgemeine, nicht notwendigerweise differenzierbare Funktionen gibt es gliicklicherweise
folgende Verallgemeinerung: Eine Funktion f ist konvex, wenn es fiir alle v ein g gibt, sodass
fiir alle u gilt

fa) = f(v) + (g, (u—v)) . (4)

Wenn f in v differenzierbar ist, dann ist tatsichlich g = V f(v) die einzige Wahl, die diese Un-
gleichung erfiillt. Ist f in v nicht differenzierbar, gibt es moglicherweise mehrere Moglichkeiten,
g zu wiahlen.

Definition 9.3. Fiir eine Funktion f: S — R und v € S nennen wir

OF(v) = {g | f(w) = f(v) + (g, (u—v)) fiir alle u € S}
das Subdifferenzial von f in v. Die Elemente von 0f(v) heiffen Subgradienten.

Eine Funktion f ist also genau dann konvex, wenn df(v) # 0 fiir alle v. Dies liegt daran,
dass Wahlen fiir g in Ungleichung (4) genau den Elementen aus 0f(v) entsprechen.

5 Subgradient Descent

Der Algorithmus Subgradient Descent funktioniert genauso wie Gradient Descent. Der einzige
Unterschied ist die Wahl von g(¥). Galt bisher die Regel, dass g() auf V f(w(®) gesetzt wurde,
ist nun g) € af (w(t)) beliebig. Das heifit, dass wir anstatt des Gradienten nun einen beliebigen
Subgradienten verwenden. Fiir differenzierbare Funktionen &ndert sich damit nichts.

Satz 9.2 und sein Beweis gelten weiterhin. Lediglich in Ungleichung (3) haben wir die Defi-
nition von g(®) genutzt. Diese Ungleichung entspricht jedoch genau der Definition des Subgra-
dienten.

Referenzen

e Understanding Machine Learning, Kapitel 14.1-14.2
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Stochastic Gradient Descent

Thomas Kesselheim Letzte Aktualisierung: 26. Mai 2020

Wir betrachten heute wie der Gradient-Descent-Algorithmus auf dem Soft-SVM-Problem
ablduft. Wir werden in diesem Zusammenhang eine Verallgemeinerung des Algorithmus namens
Stochastic Gradient Descent kennenlernen, die schnellere Laufzeiten ermdoglicht.

1 Soft-SVM: Wiederholung und neue Notation

Wir erinnern uns, dass uns beim Soft-SVM-Problem eine Menge .S von Datenpunkten mit Labels
z1 = (X1,Y1)s -+ Zm = (Xm,Ym) gegeben ist, wobei x; € R? und y; € {—1,+1} fiir alle i. Das
Ziel ist es nun w € R? und u € R zu finden, so dass

Allwl]? + %Zmax{(), 1— yi((w,x;) —u)}

i=1

minimiert wird, wobei A ein Parameter ist. Um die Notation einfach zu halten, fordern wir im

Folgenden u = 0. Dies ist mehr oder weniger ohne Beschrinkung der Allgemeinheit, wenn wir

u als die d + 1-te Komponente von w interpretieren und an alle x; als letzte Komponente 1

anfiigen. Zu einem anderen Zeitpunkt werden wir diese Anspekte noch genauer diskutieren.
Fiihren wir an dieser Stelle etwas Notation ein. Definiere nun

ehinge(hW7 Zz‘) - maX{O, 1-— yi<W, Xz>} ’

das ausdriickt, ,,wie falsch“ die Hypothese hy, auf dem i-ten Datenpunkt z; = (x;,y;) ist. Diese
Funktion nennt sich Hinge Loss. Der Name bezieht sich darauf, dass der Funktionsgraph aussieht
wie ein Tiirscharnier (siehe Abbildung 1). Der durchschnittliche Loss auf S ist nun

1 m

Lginge(hw) _ % Zghinge(hW7 Zi) ]
i=1

Wir miissen also w € RY finden, sodass f(w) := R(w) + L};nge(hw) minimiert wird, wobei

R(w) = M|w||?. Auf die Bedeutung von R(w) werden wir in einer spiteren Vorlesung eingehen.

Ehinge

yi (W, X;)

Abbildung 1: Die Hinge-Loss-Funktion.
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2 Gradient Descent fiir Soft-SVM

Diese Funktion f ist konvex. Wir kénnen also Gradient Descent nutzen, um sie zu minimieren.
Genauer gesagt miissen wir Subgradient Descent nutzen, denn sie ist nicht tiberall differenzier-
bar.

Betrachten wir der Einfachheit halber eine Stelle w, an der sie differenzierbar ist. Der Gra-
dient ist der Vektor aller partiellen Ableitungen. Die partielle Ableitung nach w; kénnen wir
mittels der {iblichen Rechenregeln berechnen

9 = 2 O phingey O 15~ 0 phingeq)y

Weiterhin gelten

9 — o, O jninge(y, 4y —
aw; R(w) =2\w; und 8wj€ (hw,zi) = {

—YiTi falls 1 — yi(W,Xi> >0
0 falls 1 — y;(w,x;) <0
Also gilt insgesamt

1
Vf(w) =2\w — p— Z YiX;
i:1—y;{w,x;)>0
Wenn wir dies also in die Iterationsvorschrift von Gradient Descent w1 = w(®) — Vv f(w®)
einsetzen, ergibt sich

1
(t+1) _ @) _ NDwd) — = . | =(1-2 " <
w w n | 2A\w - g YiX; ( nA)w'" + - g YiX;

i:1—y; (w®) x;)>0 i:1—yi(w,x3)>0

Der Algorithmus ist so also tiberraschend einfach. Hinsichtlich der Laufzeit einer einzelnen
Iteration stellen wir fest, dass diese durch die Berechnung des Gradienten dominiert wird. Pro
Dimension benétigen wir lineare Zeit in der Anzahl Samples m, insgesamt also ©(dm). Das
Problem hierbei ist, dass m typischerweise sehr grof sein sollte, denn die Stérke des Maschinellen
Lernens liegt genau darin, aus der groflen Menge an verfiigbaren Daten Schliisse zu ziehen.

3 Stochastic (Sub-) Gradient Descent

Die aufwindige Berechnung des Gradienten kénnen wir wie folgt umgehen. Wie wir in Glei-
chung (1) sehen, ergibt sich die partielle Ableitung der Funktion f aus dem Durchschnitt der
partiellen Ableitungen der Loss-Funktionen der einzelnen Datenpunkte. Diese Durchschnitt er-
setzen wir nun durch ein Zufallsexperiment: Wir ziehen einen einzelnen Datenpunkt z; und
betrachten nur die partielle Ableitung, die sich fiir diesen einzelnen Punkt ergibt. Im Erwar-
tungswert ergibt sich damit genau die gewiinschte partielle Ableitung und damit auch Richtung
fiir Gradient Descent.

Allgemeiner funktioniert der Algorithmus Stochastic Gradient Descent fiir eine beliebige
konvexe Funktion f wie folgt. Wir beginnen wieder mit w(') = 0. In Schritt ¢ bestimmen wir
w1 aus w®) wie folgt.

e Ziche einen Vektor g(¥) aus irgendeiner Wahrscheinlichkeitsverteilung, sodass E [g(t) ‘ W(t)] €

af (w1

e Setze witth) = w(t) — 5g(®),

!Diese Notation bedeutet, dass der bedingte Erwartungswert betrachtet wird. Der Vektor w® wird also
festgehalten und nun wird ein weiteres Zufallsexperiment durchgefiihrt, das von w® abhingt.
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4 Stochastic Subgradient Descent angewendet auf Soft-SVM

Im Fall von Soft-SVM hatten wir ja fiir Gradient Descent

1 O~ ohi
g = VR(w")+ — 2; VORE (), 22)
1=
gesetzt. Nun ziehen wir in jedem Schritt ¢ ein I; unabhingig, identisch verteilt aus {1,...,m}
und setzen

—yr,xy, falls 1 —yy, <w(t),x1t> >0

g = VR(w) + v (h_ oy z7,) = 22aw® + {0 - (2)

sonst

Anders formuliert erhalten wir

wttD — (1 =)W +nyx;  falls 1 — yi(w,x;) > 0
(1—n\)w® sonst

Nun gilt

E [g(t) ] w<t>] - ; Pr[l, = i (VR(w<t>) +vehinee(p_ . zi)> - VR(w<t>)+% NV (o, zi)

=1

Der bedingte Erwartungswert von g(*) ist somit also genau der Gradient, den Gradient Descent
nutzen wiirde.

5 Analyse von Stochastic (Sub-) Gradient Descent

Die allgemeine Formulierung von Stochastic (Sub-) Gradient Descent fordert nur E [g(t) ‘ w(t)] €
af (w(t)). Eine Moglichkeit wire es also auch, den Vektor g deterministisch zu bestimmen als
einen Subgradienten von f. Genau dies macht der Algorithmus Gradient Descent bzw. Subgra-
dient Descent. Stochastic (Sub-) Gradient Descent ist also eine Verallgemeinerung. Trotzdem
konnen wir genau dieselbe Garantie herleiten.

Satz 10.1. Gilt ||g\|| < p fiir alle t mit Wahrscheinlichkeit 1, dann gilt fir alle w* € R™ mit
lw*ll < B

B>
1 (t) < * np
B [mjn f(w()] < flw') 5o + 2
Insbesondere gilt fiir n = p\%

E [min f(w)] < f(w")+ =L .

Wir erhalten also im Wesentlichen die gleiche Garantie wie bei Gradient Descent mit dem
Unterschied, dass sie nur im Erwartungswert gilt. Das folgende Lemma fasst die wesentliche
Anderung im Argument zusammen.

Lemma 10.2. Bei Stochastic (Sub-) Gradient Descent gilt fiir alle t

E[f(w) - f(w")] < B [(g?,w® —w)]
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Beweis. Betrachten wir Schritt ¢ und halten wir die Zufallsereignisse, die bis hier geschehen
sind fest. Mathematisch formuliert, betrachten wir also den bedingten Wahrscheinlichkeitsraum
fiir ein festes w(*). Sei nun g = E [g(t) ‘ w(t) ] Geméf unserer Annahme gilt g € 0f ( ) Das
heifit insbesondere

o) = fw) + (gw —w)
und somit

Fw®) = f(w) < (g, w - w*)

Nunist g = E [gl@ ‘ w(t)}, also gilt wegen Linearitéit des Erwartungswerts

R S

- 528w
300w - w),
-5 (g [

Damit gilt fiir jedes w(*), egal wie wir es erreicht haben

Fw®) — f(w*) <E |:<g(t),w(t) _ W*> ‘ W(t)}

=E

Um nun die Rechnung unkompliziert formal korrekt zu halten, nehmen wir an, dass w® nur
endlich viele Werte v1,..., v, und g(t) nur endlich viele Werte gy, . .., g¢ annehmen kann. Dann
gilt fiir den unbedingten Erwartungswert

B 1) — 7w = 3P [ =] (1) — 7w
i=1
k _
t) — v, ®) w® _ w* ) — v
§;Pr_wt VZ}Eth,wt w>’wt VZ}
— i]_)r _W(t) —_ Vj} ipr |:g(t) =gj ’ w(t) = Vz} <gj,vi — W*>
i=1 . j=1
= i éPI‘ |:W(t) =Vy, g(t) = g]] <gj’vi - W*>
i=1 j=1

Diese Rechnung gilt auch allgemeiner. Dafiir miissten wir allerdings den bedingten Erwartungs-
wert formaler definieren, was iiber die Inhalte der Vorlesung hinausgeht. 0

Nun kénnen wir den Algorithmus im Wesentlichen wie Gradient Descent analysieren. Wir
miissen lediglich des 6fteren Gebrauch davon machen, dass der Erwartungswert linear ist.



AGML, Sommersemester 2020 Vorlesung 10 (Seite 5 von 6)

Beweis von Satz 10.1. In der Analyse von Gradient Descent haben wir gezeigt, dass fiir all u, v
gilt

1
(w,v) = o ([lu+v]* = [Jul* = v]?) .

Diese Gleichung haben wir wie folgt genutzt, um (g, w() — w*) umzuschreiben. Dabei ist es
unerheblich, wie g definiert ist. Wir nutzen lediglich w(tt1) = w(®) — pg®.

<g<t>7w(t> _ W*> _ _71] <W<t> — W, —ng(t)>

1
- _ = (t+1) _ ox12 ®) o *112 a0 112
g (19 w2 = [ w2 = =g )
1
_ ) o2 (t+1) %2 M o(0) 12
g (I =W P = w0 —w ) + Jig

Ebenfalls erhalten wir iiber die Teleskopsumme und w®) = 0 und |[w™+Y) — w*||?2 > 0 wieder

T T
S (0w = w) = 537 (Il = = D - 2) + )

T
1 n
< 77!\W*H2 +5 leg(t)H2 -

Nun kénnen wir diese Gleichung mit Lemma 10.2 kombinieren. Aufgrund der Linearitéit des
Erwartungswertes erhalten wir

T
1 2 7
= —[lw P+ 5D E[ Wﬂ.
277” | +2t:1 g™

Weil |w*||? < B2 und E [||g®|?] < p? gemiB Annahme, folgt der Satz. O

6 Norm des Subgradienten

Die Garantie in Satz 10.1 hingt von p ab, wobei wir fordern, dass ||g®|| < p fiir alle ¢ mit
Wahrscheinlichkeit 1. Wie kénnen wir diese Werte im Fall von Soft-SVM beschréinken?
Betrachten wir Gleichung (2), kénnen wir g(*) schreiben als g® = 2Aw® 4+ v(®) wobei

o _ ) ynxy falls 1—yp(w,xp,) >0
0 sonst
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Wir konnen also mittels der Dreiecksungleichung abschitzen

Il < 2X 1w + v < 2w + max|x]| -

Entscheidend ist also, wie gro8 |[w(®|| werden kann. Dies ergibt sich aus dem bisherigen Verlauf
des Algorithmus. Hierfiir konnen wir g, ..., gV einsetzen und erhalten

t—1
wt) = W(t_l)—n (2)\w(t_1) + V(t_l)) =(1-2n)) w(t_l)—nv(t_l) = Z (1 -2\ = va(i) .
i=1

Nun erhalten wir mittels Dreiecksungleichung und geometrischer Summenformel

o0
1 1
—1-—
:0

IIlZaXHXiH .

In die obige Schranke auf ||g(*)|| eingesetzt, bekommen wir also

g1 < 2maxxi]

Referenzen

e Understanding Machine Learning, Kapitel 14.3 und 14.5
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Kernel-Funktionen

Thomas Kesselheim Letzte Aktualisierung: 29. Mai 2020

In vielen Féllen kann man mittels linearer Klassifikation keine geniigend guten Vorhersagen
treffen. Wir werden uns heute komplexere Klassifikatoren anschauen. Die zugrundeliegenden
Optimierungsprobleme kénnen wir allerdings auf lineare Klassifikation zuriickfiihren.

Beispiel 11.1. Uns seien folgende Trainingsdaten gegeben:

Ty Yi
-2 -1
-1 -1
1 +1 [ ] [ ] [ ] [ ] [ ]
2 +1
3 -1

Hier ist lineare Klassifikation, also die Wahl einer Schwellenwertfunktion, offensichtlich
keine sonderlich gute Idee. Es ist relativ offensichtlich, dass eigentlich ein Intervall gesucht
wird. Interessant ist, dass ein Algorithmus dieses Intervall auch mittels linearer Klassikation
finden kann, wenn wir als Merkmale (x;,x?) € R? ansehen.

$2
(331,.%'12) Yi
(—2,4) -1
(-1,1) -1 ° ®
(1,1) +1
(2,4) +1 ° °
3,9 -1 T

Durch Hinzunahme einer Dimension gibt es nun also eine Gerade, die die Punkte separiert.

1 Einbettungen und Feature Space

Anstatt lineare Klassifikation iiber dem Merkmalsraum X betrachten wir diese nun iiber einem
Feature Space F'; zunéchst ist F' = R", wobei n € N unterschiedliche grofl sein kann. Dazu ist
uns eine Einbettung v: X — F gegeben.

Beispiel 11.2. e Im oben Beispiel ist X =R, F =R?, ¢(x) = (z,2?).

e Fine Einbettung, tber die wir schon implizit gesprochen haben, ist die folgende. Ist X =
Re, konnen wir F = R und (x) = (x,1) betrachten. Das heifit, wir figen jedem x-
Vektor als letzte Komponente eine 1 an. Jetzt kénnen wir uns auf lineare Klassifikation
mittels Hyperebenen beschrdinken, die durch den Ursprung gehen.

o Allgemeiner konnen wir polynomielle Einbettungen betrachten. Sei dafir X = R? und
k €N fest. Nun definieren wir 1(x) als den Vektor, dessen Komponenten alle méoglichen

Formen Hle zl = a:{l . xéz e xﬁf mit 0 < j; < k fiir alle i hat. Die Dimension von F
ist n = (k+ 1)¢, kann also leicht sehr grof werden. Konkret konnen wir d = 2 und k = 2

anschauen, dann ist ¥(xy,x2) = (1,371,95%,952,xle,x%xQ,xg,xlxg,w%xg).
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o s konnte aber auch X die Menge aller E-Mails sein und F' konnte ein Vektor irgendwel-
cher Eigenschaften sein, beispielsweise wie oft das gewisse Worter vorkommen.

Der Lernalgorithmus, der eine Einbettung ¢ benutzt, konnte also wie folgt aussehen:

1. Berechne die Einbettung der Trainingsdaten. Sei die eingebettete Trainingsmenge S ent-
sprechend definiert als (¢¥(x1),y1),- -, (¥ (Xm), Ym)-

2. Finde einen moglichst guten linearen Klassifikator hyw: F' — {—1,+1}, mit Trainingsmen-
ge S.

3. Gib Hypothese h: X — {—1,+1} zuriick mit

{+1 falls (w, () >0

hx) —1 sonst
Im zweiten Schritt konnten wir beispielsweise das Hard- oder das Soft-SVM-Problem auf F' mit
Trainingsmenge S 16sen.
Je nachdem, wie 1 gewéhlt wird, also welche Features dem Algorithmus zur Verfiigung
stehen, werden die Ergebnisse besser oder schlechter. Deren Auswahl hiangt von der Anwendung
ab. Hier steckt ein bisschen die Kunst des Maschinellen Lernens.

2 Reprisentationssatz

Ob der Algorithmus, der die Einbettung nutzt, eine sinnvolle Laufzeit hat, hangt mafigeblich von
der Dimension n des Feature Space ab. Diese kann jedoch sehr hoch sein, wie beispielsweise bei
der oben genannten polynomiellen Einbettung. Wir werden nun einen Satz zeigen, mit dessen
Hilfe sich die Laufzeit jedoch drastisch reduzieren ldsst.

Dafiir nehmen wir an, dass wir im zweiten Schritt einen Vektor w € R suchen, der eine
Funktion f: R™ — R minimiert, die die Form

fw) = Adwl) + 2w, o(x1)), - (W, 9 (%m))) (1)

hat, wobei f;: R — R monoton steigend und fo: R”™ — R eine beliebige Funktion ist. Wichtig
ist, dass beide Funktionen nur in einer sehr eingeschrinkten Art von w abhingen. Die erste
héngt lediglich von der Norm von w ab, die zweite lediglich von den Skalarprodukten von w
mit X1, ..., Xm.

Alle Arten zur linearen Klassifikation, die wir bislang kennengelernt haben, lassen sich so
darstellen.

e Bei Soft-SVM ist dies relativ offensichtlich. Hier kénnten wir
2 1
fi(a) = Aa?, folar, ... am) = p- ;max{o, 1 —ya;}
wiéhlen.
e Um Hard-SVM zu erfassen, nutzen wir

0 falls y;a; > 1 fiir alle ¢
fila) = a?, fa(ar, ... am) = { vidi =

o0 sonst

Die Funktion f3 bringt also in diesem Fall die Nebenbedingungen zum Ausdruck.
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e Auch die Zielfunktion, die Anzahl falsch klassifizierter Punkte léasst sich in dieser Form
schreiben. Hier ist fi(a) = 0 fiir alle @ und fa(ay,...,am) = |{i | yia; <0}

Satz 11.3. Fliir jede Auswahl von Datenpunkten x1,...,Xm € X, Finbettungsfunktion ¢: X —
F, und jede Funktion f der Form wie in Gleichung (1) gibt es i, ..., quy,, sodass der Vektor
w' =" a(x;) die Funktion f minimiert.

Das heift, dass es um f zu minimieren ausreicht, nur die Linearkombinationen von ¢ (x1), . . . ¥ (X
zu betrachten.

Beweis von Satz 11.3. Sei w* € F eine optimale Losung des Optimierungsproblems. Die Vek-
toren ¥ (x1),...,%(xy) erzeugen eine Unterraum U von F von Dimension hoéchstens m. Wir
betrachten nun eine Orthonormalbasis by, ..., by dieses Unterraums U. (Diese kénnte man bei-
spielsweise mit dem Gram-Schmidtschen Orthogonalisierungsverfahren bestimmen.) Das heifit
(bj,b;) =1 und (bj,bj) = 0 fiir j # j'. AuBerdem lésst sich jedes ¥(x;) als Linearkombination
von bi,...,b; darstellen. Weil es sich um eine Orthonomalbasis handelt, ist dies besonders

einfach. Es gilt
k

$(x) = S (W), by)b; -

j=1
Nun betrachten wir die Projektion von w* auf U. Diese berechnet sich in dhnlicher Weise
als

k
W/ = Z(W*, bj)bj
Jj=1

Es gilt w/ € U, denn U umfasst ja genau alle Linearkombinationen von by, ..., bg. Wir kénnen
w’ aber auch als Linearkombination von 1(x1), ..., 1¥(Xy,) schreiben, denn auch diese Vektoren
erzeugen U. Das heifit, es gibt aq,..., oy, € R mit

w = Z i (x;) -
i1

Wir behaupten nun, dass f(w’) < f(w*). Betrachten wir zunéchst das Skalarprodukt von
w’ mit einem beliebigen bj;/. Es gilt

k
<W/7bj/> = <Z<W*vbj>bj7bj'> =

j=1

(W, bj) - (bj, bjr) = (W, bjr) .

M-

1

J
Somit gilt also auch

k k k
(W (xi)) = <W/7Z<¢(Xi),bj>bj> = (%), by)- (W, bj) =D (1(x:), by (W, by) = (W*,1(x,)) .
j=1 j=1 j=1
Das heift, dass fo((w', (1)}, ., (W, 0(xm)}) = fol{w*, 9(x), ., (W ().
Eine analoge Rechnung liefert uns (w’, w') = (w*, w’). Definieren wir uns also ¢ = w* —w’,
stellen wir fest, dass (w',¢) = (W', w*) — (w', w’) = 0. Somit gilt auch, dass
W[ = (W' + e, w' +c) = (W', w') + (c,c) = |W'[|* + [|e|* .

Dies bedeutet also auch, dass |[w'| < ||[w*|| und damit fi(||w’]]) < fi(||w*|]) aufgrund der
Monotonie.
Insgesamt gilt also f(w') < f(w*). O

Aufgrund von Satz 11.3 konnen wir uns also darauf beschrinken a € R™ zu finden anstatt
w € R". Dies ist von enormem Nutzen, wenn n > m.
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3 Effiziente Berechnung

Wie finden wir also einen Vektor e € R™, so dass f (37" a;¢(x;)) minimiert wird? Weiterhin
hat f die Form aus Gleichung (1). Das heifit, f hingt nur von der Norm und den Skalarprodukten
ab. Diese kénnen wir auch direkt durch o ausdriicken. Gilt ndmlich w = >, a;¢(x;), dann

auch
(W, ¥(x;)) <Z (i), > ZO‘Z Xi), ¥ (x5))

und

Wl = v{w,w) = <Zai¢(><¢),zaw(xg’)>= ZZ%% S U(x))) -
=1 j=1

i=1 j=1

Definieren wir uns also eine neue Funktion K: X x X — R iber K(x;,x;) = (¥ (x:), ¥ (x5)),
dann lassen sich diese Ausdriicke schreiben als

m

(W, (%)) = > 0K (x4, ;)

i=1
und

[wil = Zzaz% (xi,%;)

=1 j=1

Somit gilt also

f (Z cm/;(xﬁ) = fi ZZaiajK(xi,x] +fo (Z a; K (x;,%1), Zaz (XiyXm, )
i=1

i=1 j=1 i=1

Insgesamt miissten wir also, um f zu berechnen und auch zu minimieren, lediglich K (x;,x;)
fiir alle Paare ¢ und j ausrechnen. Die einzelnen Werte von 1(x;) sind nicht gar nicht erforderlich.
Das heifit, wir rechnen nicht einmal m? anstatt m - n Werte aus. Fiir groBe n kann dies ein
enormer Vorteil sein.

Beispiel 11.4. Betrachten wir wieder die polynomielle Einbettung des X = R%. Relativ einfa-
ches Nachrechnen ergibt, dass K(x;,%;) = (1 + (x;,x;))¥. Das heifit, diese Werte lassen sich
relativ leicht ausrechnen. Eine Bestimmung der m Vektoren 1 (x1),. .., (Xy) mit je (k + 1)¢
Eintragen ist nicht erforderlich.

4 Kernels

Wie wir gesehen haben, ist es also nur nétig, die Funktion K: X x X — R auszurechnen. Eine
solche Funktion nennt sich Kernel. Sie ersetzt gewissermaflen das Skalarprodukt auf X.

In der Tat ist es nicht einmal erforderlich, dass der Feature Space F' eine endliche Dimension
hat, denn die Funktion ¢: X — F muss nicht explizit ausgewertet werden. Der Raum F' muss
lediglich ein reeller Vektorraum sein, auf dem ein Skalarprodukt definiert ist, ein sogenannter
Hilbertraum.

Referenzen

e Understanding Machine Learning, Kapitel 16
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Overfitting

Thomas Kesselheim Vorschau Letzte Aktualisierung: 9. Juni 2020

In den letzten Vorlesungen haben wir vor allem diskutiert, wie wir eine Hypothese finden,
die die Trainingsdaten moglichst gut beschreibt. Der Sinn einer solchen Hypothese ist es, Vor-
hersagen bei neuen Datenpunkten zu machen. Konkret also: Uns sind viele E-Mails gegeben,
die jeweils als ,,Spam“ oder ,,kein Spam* markiert sind. Auf dieser Basis wollen wir neu ankom-
mende E-Mails moglichst gut klassifizieren.

1 Beispiel: Klassifikation

In Abbildung 1 sind Punkte in R mit bindren Labels —1 und +1 gegeben, dargestellt als blaue
und rote Punkte. Es wire nun moglich, mittels durch Auswahl einiger Intervalle eine Hypothese
zu finden, die keinen Trainingsfehler hat. Erstellt wurden die Daten jedoch wie folgt. Zunéchst
wurde z; ~ Uniform|0, 1] gezogen wurde. Anschliefend wurden die Labels bestimmt {iber
+1  falls z; +v; > %
Yi = ;
—1 sonst
wobei v; ~ Uniform[—0.3,0.3] ein Rauschen mit Erwartungswert 0 ist. Das Rauschen ldsst sich
nicht vorhersagen. Entsprechend sollte einfach nur
1 fallsz>1
L (x) _ + alls x > 5
—1 sonst
als Hypothese verwendet werden. Diese hat zwar einen Trainingsfehler, ist aber die bestmogliche
Vorhersage fiir neue Punkte.

" EEE EEE EEN EE [ 1] ] u L1} mmm ooo0E00® oo0mxp00® O O ® © eeoo0o00 0000 000 00 ©

Abbildung 1: Datenpunkte mit Rauschen.

2 Beispiel: Regression

Fin dhnliches Problem tritt auch bei Regression auf. Hier sind nun die Labels nicht mehr —1
oder +1 sondern beliebige reelle Zahlen.

Abbildung 2 zeigt ein Beispiel von acht Paaren von Datenpunkten mit ihren Labels (z;,y;),
wobei z; € [0,1] und y; € R. Es wére nun sehr verfiihrerisch, eine Funktion h zu wihlen, die die
Werte in allen gegebenen Punkten genau trifft. Beispielsweise ein Polynom von Grad sieben. In
diesem Fall ist es gegeben durch

h(z) = 5940.33z"—20262.625+27659.725—19294.724+7302.0123 — 1476.72%+148.06 7 —5.53035 .

Dies entspricht dem roten Funktionsgraph in der Abbildung.

In diesem Fall wurden die Daten wie folgt generiert: Zunéchst wurde x; ~ Uniform[0, 1] gezo-
gen. AnschlieBend wurde das Label fiir z; bestimmt als y; = z;+v;, wobei v; ~ Normal(0, 0.0025).
Das heiflt, v; ist ein zufélliges Rauschen aus einer Normalverteilung mit Erwartungswert 0 und
Varianz 0.0025.

Auch in diesem Fall kénnen wir das Rauschen nicht vorhersagen. Deshalb ist die beste
Hypothese h in diesem Fall gegeben durch h(x) = z, eingetragen als die blaue Gerade.
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Abbildung 2: Die rote Kurve ist ein Polynom vom Grad sieben, das genau durch die acht
gegebenen Punkte geht. Die blaue Gerade minimiert den tatséchlichen Fehler.

3 Problemstellung

Wir nehmen an, dass wir Datenpunkte aus einer Menge X erhalten und Labels fiir derartige
Datenpunkte vorhersagen sollen. Diese Menge moglicher Labels heifit nun Y. Ein Fall ist binére
Klassifikation, also Y = {—1,+1}. Ein anderer Fall ist Regression mit ¥ = R.

Wie im agnostischen Fall des PAC-Learning nehmen wir an, dass es eine Wahrscheinlich-
keitsverteilung D iiber Paare z = (x,y) € X x Y gibt, sodass y das korrekte Label ist fiir z. Uns
ist eine Trainingsmenge S = {z1,...,2m}, 2i = (25, ¥;) € X x Y aus m Samples gegeben, die
aus D gezogen ist. Auf Basis von S berechnen wir eine Hypothese hg: X — Y, die ein Label
hs(z) fir jeden Punkt = vorhersagt.

Wir haben bereits Begriffe wie den Trainingsfehler und den tatséchlichen Fehler kennenge-
lernt. Diese werden wir nun erweitern.

4 Loss-Funktionen und Fehlerbegriffe

Allgemein schreiben wir £(h, z) fiir den Loss von Hypothese h auf z = (z,y). Im Fall von binérer
Klassifizierung ist die einfachste Wahl fiir ¢ der 0/1 Loss, definiert durch

_ 0 falls h(z) =y
£ 1(h,z) B {1 sonst

Wir haben bereits den tatsdchlichen Fehler kennengelernt. Diesen verallgemeinern wir zum

erwarteten Loss einer Hypothese h auf einem Datenpunkt-/Label-Paar gezogen aus D, das
heifit

Lp(h) =E,.p[l(h,2)]
Auch konnen wir den Trainingsfehler verallgemeinern. Dieser ist fiir eine Menge S von m

Datenpunkt-/Label-Paaren definiert als

m

Ls(h) = = 3" t(h =) -

=1
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Anstatt des 0/1 Loss konnen wir auch andere Funktionen einsetzen. Wir haben bereits den
Hinge Loss im Kontext von Support Vector Machines kennengelernt. Diesen hatten wir nur fiir
lineare Klassifikatoren hy, definiert als

Ehinge(hw7 Z) = max{[), 1-— y<W, X>} .

Der Vorteil des Hinge Loss ist, dass die Funktion stetig und konvex ist. Es gilt 0~ (hy,2) <
¢hinge (. z) fiir alle w und z. Das heifit, Fehler werden im Vergleich zum 0/1 Loss im Normalfall
iiberschétzt. Der Soft-SVM-Ansatz ldsst sich auch so interpretieren, dass die Funktion ¢0~!
durch eine stetige, konvexe Funktion ersetzt wird, die leichtere Optimierung ermdoglicht.

Bei Regression versucht man im Normalfall, Fehlerquadrate zu minimieren. Die Loss-Funktion
ist in diesem Fall

Esquared(}% Z) — (h(l‘) _ y)2 )

5 Verallgemeinerungsfehler und Overfitting

Unser Ziel ist es, eine Hypothese zu finden, deren tatséichlicher Fehler Lp(h) moglichst klein
ist. Dafiir betrachten wir einen Lernalgorithmus, der eine Hypothese hg auf Basis einer Trai-
ningsmenge S berechnet. Diese Menge S besteht aus m Paaren z; = (x4, y;), die jeweils aus der
Verteilung D gezogen werden.

Den tatséchlichen Fehler Lp(hg) der berechneten Hypothese kénnen wir uns nun wie folgt
vorstellen: Einerseits ist hg womdoglich auf .S schon nicht perfekt. Dies beschreibt der Trainings-
fehler Lg(hg). Andererseits reprisentiert das Sample S die Verteilung D moglicherweise nicht
perfekt. Deshalb bezeichnen wir nun

Lp(hs) — Ls(hs)

als den Verallgemeinerungsfehler.

Als Qwerfitting versteht man nun das Phidnomen, dass bei gewissen Lernalgorithmen der
Trainingsfehler klein wird, der Verallgemeinerungsfehler aber grofi. Insbesondere problematisch
ist es, wenn groflere Trainingsmengen iiber einen grofleren Verallgemeinerungsfehler zu einem
grofleren tatséchlichen Fehler fiihren.

6 Stabilitdt von Lernalgorithmen

Wir wollen nun den erwarteten Verallgemeinerungsfehler eines Lernalgorithmus besser verste-
hen. Das heifit, uns interessiert

E [Lp(hs) — Ls(hs)] (1)
wobei der Erwartungswert {iber die Menge S geht. Dies wollen wir umschreiben.
Sei nun I eine Zufallsvariable, die unabhingig gleichverteilt aus {1, ..., m} gezogen wir. Der
erwartete Trainingsfehler ist nun
1 m
E[Ls(hs) =B | — ;e<hs, zi)| =E[l(hs, 21)]
1=

Der erwartete tatséichliche Fehler ist der erwartete Loss auf einem frisch gezogenen Datenpunkt-
/Label-Paar 2/, das wiederum aus D gezogen wird

E [Lp(hs)] = E [¢(hg, )]
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Auch dies konnen wir anders schreiben. Gegeben Samples z1,. .., 2, und 2/, sei S* die Menge
21yevy2i1,2 s Zit1, - - -, Zm. Das heifit, wir ersetzen z; durch 2’. Da z; und 2’ beide aus D gezogen
werden, sind sie identisch verteilt und wir kénnen ihre Rollen vertauschen. Deshalb gilt fiir alle
i

E [e(hs, Z/)] = E [é(hSi, Zz)]

Weil diese Gleichung fiir alle ¢ gilt, konnen wir auch die Zufallsvariable I von oben wieder
verwenden. Damit gilt insgesamt

E [Lp(hs)] = E [¢(hgr, 21)]

Und so kann der erwartete Verallgemeinerungsfehler aus (1) mittels Linearitéit des Erwar-
tungswerts auch umgeschrieben werden zu

E [Lp(hs) = Ls(hs)] = E [Lp(hs)] — E [Ls(hs)] = E [((hgr, z1)] = E [((hs, zr)]
=E [((hgr,z1) — U(hs, 21)]

Das heif3t, der erwartete Verallgemeinerungsfehler kann nur grof sein, wenn es irgendwelche
S% und S gibt, die zu sehr unterschiedlichen Hypothesen fithren. Dabei sollte man bedenken,
dass S® und S sich nur in einem einzigen Punkt unterscheiden. Ein Algorithmus, bei dem dies
niemals geschieht, nennen wir stabil.

Definition 12.1. Sei 6: N — R. Fin Lernalgorithmus ist universell §-austauschstabil, wenn
fiir alle m € N, alle Mengen S von m Datenpunkt-/Label-Paaren, alle i € {1,...,m} und alle
weiteren Datenpunkt-/Label-Paare 2" gilt

E(hgi,zi) - E(hg,z,-) < (5(m) .

Wir nennen ihn universell austauschstabil, falls er universell §-austauschstabil ist fiir eine Funk-
tion § mit 6(m) — 0 fiir m — oo.

Wir sehen nun, dass wenn unser Lernalgorithmus universell J-austauschstabil ist, dass
E [Lp(hs) — Ls(hs)] = E [l(hgt, z1) — €(hs, 21)] < 6(m) .

Insbesondere, wenn §(m) — 0 fiir m — oo, dann gibt es kein Overfitting.

Der groflie Vorteil davon, iiber Stabilitit zu sprechen ist, dass es sich ausschliellich um eine
Eigenschaft des Lernalgorithmus handelt. Wir miissen also keine Aussage iiber Wahrschein-
lichkeitsverteilungen oder statistische Eigenschaften diskutieren, sondern lediglich Algorithmen
entwickeln, deren Ausgabe sich nicht entscheidend &ndert, wenn ein Datenpunkt ausgetauscht
wird.

7 Beispiel

In unserem Einstiegsbeispiel haben wir anschaulich gesehen, dass es merkwiirdige Effekte haben
kann, Regression mittels einer Interpolation durch Polynome zu machen. Schon mit einem sehr
einfach Beispiel kénnen wir sehen, dass der Algorithmus, der den Trainingsfehler minimiert,
nicht universell austauschstabil ist.

Der Merkmalsraum ist X = R. Fiir unser Beispiel brauchen wir nur Polynome vom Grad 1,
also Geraden bzw. Hypothesen der Form h,(x) = a -z + b fiir a,b € R,
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Abbildung 3: Die rote Gerade fiihrt jeweils durch die schwarzen Punkte. Im rechten Bild ist ein
Punkt ersetzt. Auf dem bisherigen Punkt (in blau) gibt es nun einen grolen Fehler. Wie viele
Punkte sich in (0, 0) befinden, ist irrelevant.

Betrachten wir zunéchst den Lernalgorithmus, der den Trainingsfehler minimiert. Das heif3t
hs = hqap, wobei a und b so gewahlt sind, dass quuared(ha,b) = % Yot (ax; + b — yi)? mini-
mal ist. Dieser Algorithmus ist nicht universell austauschstabil. Seien dafiir (z1,y1) = (1,0),
(x2,92) = ... = (Tm,Ym) = (0,0). Die Hypothese h, die den Trainingsfehler minimiert ist hq.
Betrachten wir i = 1, (2/,v) = (1,1). Auf S? wird der Trainingsfehler von hi ¢ minimiert (siche
Abbildung 3). Es gilt somit ¢(hgi, z;) — ¢(hs, z) = 1 und somit 6(m) > 1. Auch bei Polyno-
men von hoherem Grad tritt derselbe Effekt auf, denn weiterhin minimieren die Geraden den
Trainingsfehler.

In der n#chsten Vorlesung werden wir zeigen, dass dies nicht auftritt, wenn wir Regulari-

sierung verwenden. In diesem konkreten Fall wiirden wir statt L?Squared(hmb) nun A(a? + b%) +

d . . . . . .
LG (hg,p) minimieren, wobei A ein Parameter ist. Der anschauliche Grund ist, dass der

Einfluss eines Punktes (z;,y;) auf den Loss, also = (ax; + b — y;)?, klein wird im Vergleich
zu A(a? + b?), sobald m gro wird. Wir erkaufen uns dies iiber einen hoheren Trainingsfehler.
Deshalb sollte A nicht zu grof gewéhlt sein.

Referenzen

e Blog-Post von Moritz Hardt: https://www.offconvex.org/2016/03/14/stability/
e Understanding Machine Learning, Kapitel 13.2

e Foundations of Machine Learning, Kapitel 14.1-14.2 (etwas andere Aussage)
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Regularisierung

Thomas Kesselheim Letzte Aktualisierung: 12. Juni 2020

In der letzten Vorlesung haben wir das Phinomen des Overfitting kennengelernt. Zu Er-
innerung: Wir nehmen an, dass ein Lernalgorithmus eine Trainingsmenge von m Datenpunkt-
/Label-Paare aus X x Y erhilt und mithilfe von diesem Sample eine Hypothese hg: X — Y
finden soll, die Labels fiir Datenpunkte vorhersagen sollen. Beim Overfitting tritt es auf, dass
die Hypothese ,,zu gut“ auf den Trainingsdaten ist und sich daher zu schlecht verallgemeinert.
Fine gute Faustregel ist, dass man ,einfachere* Hypothesen verwenden sollte, um Overfitting
zu vermeiden. Hierzu werden wir heute ein formales Argument fiithren.

Wir haben bereits die Definition eines stabilen Lernalgorithmus eingefiihrt.

Definition 13.1. Sei 6: N — R. Fin Lernalgorithmus ist universell §-austauschstabil, wenn
fiir alle m € N, alle Mengen S von m Datenpunkt-/Label-Paaren, alle i € {1,...,m} und alle
weiteren Datenpunkt-/Label-Paare 2" gilt

U(hgi, z;) — l(hg,z;) < d(m) .

Hierbei ist ¢(h,z) der Loss von Hypothese h auf z € X x Y. Dieser driickt aus, , wie
falsch“ die Hypothese h auf z ist. Unsere Erkenntnis hinsichtlich Overfitting ldsst sich knapp
zusammenfassen als:

Ein universell d-austauschstabiler Lernalgorithmus mit d(m) — 0 fiir m — oo ver-
meidet Overfitting.

Heute werden mit Regularisierung einen grundsétzlichen Ansatz kennenlernen, der zu Sta-
bilitdt fiihrt. Anstatt eine Hypothese hg zu wihlen, sodass Lg(hg) minimiert wird, sollten
»extreme®“ Hypothesen vermieden werden.

1 Annahmen

Wir betrachten heute keine beliebigen Hypothesenklassen mehr, sondern treffen ein paar Annah-
men. Zunédchst einmal nehmen wir an, dass die Hypothesen in unsere Klasse H durch Vektoren
w € R” parametrisiert sind. Das heifit,

H={hw: X =Y |we M},
wobei M C R™ eine konvexe Menge ist. Ein typisches Beispiel sind lineare Klassifikatoren (hier
ist Y ={-1,+1})
+1 falls (w,x) >0
() = { (w, x)
—1 sonst
Wie wir gesehen haben, kénnen mittels Einbettungen in einen Feature Space auch andere Hy-

pothesen so dargestellt werden.
Analog kann man lineare Regression darstellen (nun ist Y = R) iiber

hw(x) = (W, %) .

Fiir unsere Ergebnisse wird vollkommen unerheblich sein, wie die Hypothese hy, genau
definiert ist. Wir nehmen lediglich an, dass die Loss-Funktionen konvex sind. Das heif3t, dass
w > {(hw, z) konvex ist fiir alle z.
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Dariiber hinaus nehmen wir an, dass sie p-Lipschitz sind. Das heifit, dass fiir alle w, w’ € M
und alle z
U hw, 2) — U hwr, 2) < pllw — W] .

Beispiel 13.2. Der 0/1 Loss ist nicht konvex. Entsprechend sind unsere heutigen Ergebnisse
nicht anwendbar.
Der Hinge Loss auf z = (x,y) ist definiert als

ghinge(hW7 Z) — max{(), 1-— y<W7 X>} .

Er ist ||x]||-Lipschitz.
Der quadratische Loss (fiir Regression) ergibt sich zu

quuared(hw’ Z) _ ((W,X> _ y)2 )

Er ist p-Lipschitz fiir p = 2||x|*> maxwens ||w]|-

2 Starke Konvexitit

Wir werden nun eine genauere Definition von Konvexitét einfithren, die zum Ausdruck bringt,
wieviel deutlicher eine Funktion wichst als eine lineare Funktion. Dafiir vergleichen wir sie mit
einer quadratischen Funktion.

Definition 13.3. Sei 0 > 0. Eine Funktion f: M — R heifit o-stark konvex, wenn fir alle
u,v € M und alle A € [0,1] gilt!

FOW+ (1= 2)v) £ Af(w) + (1= A)f(v) = ZA1 =N Ju—v]? .

Eine Funktion ist konvex genau dann, wenn sie 0-stark konvezx ist.

Konvexitéit erfordert, dass die Funktion f jeweils unterhalb der Verbindungslinien auf dem
Funktionsgraphen bleibt. Starke Konvexitit mit o > 0 fordert zusdtzlich, dass sie unterhalb
einer verbindenden Parabel bleibt. Das heifit, die Funktion muss ,,durchhingen® (siche Abbil-
dung 1).

f(x)

Abbildung 1: Eine stark konvexe Funktion in schwarz mit einer direkten Verbindunglinie zweier
Punkt in rot und einer dazwischen liegenden Parabel in blau.

!Es mag etwas verwundern, dass der Faktor g ist und nicht o. Auf diese Weise bleibt die Definition dquivalent
mit anderen in der Literatur iiblichen Formulierungen.
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Beispiel 13.4. Fiir jedes a > 0, ist Funktion f: R" — R, f(x) = a||x||? jeweils 2a-stark
konvexz.
Fiir alle u,v € R"™ und alle X € [0,1] gilt

n n

Au+ (1= => "+ (1= X)) =D (ag)® + (1= Mg + 2D (1 = No;
i=1 =1
= N[ull? + (1 = M?[IV]? + 2A(1 = A)(u, v)
= Al = A1 = Mlaf? + (1 = Vv[Z = A1 = N)[[v]* + 2A(1 = A)(u,v)
= A[uf? + (1= Vvl = A1 = N)[fu—v|* .

Indem wir beide Seiten dieser Gleichung mit o multiplizieren, erhalten wir
2a
FOu+ 1= 2)v) = Af(w) + (1 =N f(v) = A0 = Nfju—v]?* .

Das heifit, die geforderte Ungleichung ist fiir o = 2a sogar mit Gleichheit erfillt.

Die Bedeutung von stark konvexen Funktionen zeigt sich im folgenden Lemma. Es sagt
aus, dass wir in deutlicher Entfernung vom Minimum auch deutlich gréflere Funktionswerte
beobachten.

Lemma 13.5. Sei f: M — R eine o-stark konvexe Funktion. Sei w € argminyeps f(v) ein
Punkt, der f minimiert. Dann gilt fiir alle u € M

Fl)  flw) > T~ w>

Beweis. Wir betrachten die Verbindungslinie zwischen u und w. Fiir alle A € [0, 1] haben wir
gemaf starker Konvexitét

FOU+ (1= Nw) < Af()+ (1= ) f(w) = ZAML = N]ju—w]? .
Gleichzeitig wird f durch w minimiert. Also
fAu+ (1 =w) > f(w) .
Somit gilt fiir alle A € [0, 1]

AF(u) + (1= ) f(w) = SML= Nl —wl? > f(w) .

Falls A > 0 ist, ist dies dquivalent zu

Angenommen, es gilt nun
o
fla) = fw) < T - wl? |

dann miisste auch

J(w) = f(w) < eZlu— wlP

fiir irgendein ¢ < 1 gelten. Dann kénnten wir A = 1 — ¢ wihlen und wiirden einen Widerspruch
erhalten. Also gilt das Lemma. O

Wir halten noch eine einfache Beobachtung fest, die sich durch Nachrechnen zeigen lésst.

Beobachtung 13.6. Ist fi: M — R eine o-stark konvexe Funktion, fo: M — R eine konveze
Funktion, dann ist fi + fo eine o-stark konvexe Funktion.
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3 Stark konvexe Regularisierung fiihrt zu Stabilitit

Wir betrachten nun den Lernalgorithmus, der anstatt w zu finden, sodass Lg(hy ) minimiert
wird, eine reqularisierte Zielfunktion f(w) = R(w)+ Lg(hw) minimiert. Konkret ist in unserem
Fall R(w) = a||w||?>. Wie wir oben gesehen haben, ist R nun 2a-stark konvex und somit auch

f.

Beispiel 13.7. Fir lineare Klassifikation mittels Hinge Loss ergibt sich genau das Soft-SVM-
Problem?.

Fiir Regression nennt sich die Vorgehensweise o||w||? + quuared(hw) zu minimieren Ridge
Regression.

Wir kénnen nun zeigen, dass jeder Lernalgorithmus, der eine stark-konvexe Regularisie-
rungsfunktion verwendet, stabil ist.

Satz 13.8. Sind die Loss-Funktionen konvex und p-Lipschitz und ist die Regularisierungsfunk-
2p%
mo

tion o-stark konvex, dann ist der Lernalgorithmus universell == -aqustauschstabil.

Es ist wichtig, dass d(m) = % gegen 0 konvergiert. Geméfl der Ergebnisse aus der letz-
ten Vorlesung heifit das, dass der erwartete Verallgemeinerungsfehler verschwindet, wenn wir
geniigend Samples verwenden.

Beweis von Satz 13.8. Sei w* der Vektor, der die Hypothese beschreibt, die der Lernalgorithmus
auf S berechnet. Das heiBit, hg = hw+. Analog sei w' der entsprechende Vektor fiir die Losung
auf S°.

Laut Definition minimiert w* die Funktion f(w) := R(w)+ L > 71 U(hw, zj). Andererseits
minimiert w’ die Funktion fi(w) := R(w) + * 22‘1173‘# U hw, zj) + U(hw, 2').

Deshalb erhalten wir jeweils durch Anwendung von Lemma 13.5

Fw') = Fw*) = 2wt —w?
und
Fw) = Fiwh) = 2w — wi? .
In Kombination also
FWh) = f(w*) + fi(w") = fi(w') > of|w' —w*||?
Wenn wir die Definitionen von f und f* einsetzen, erhalten wir die dquivalente Ungleichung

1 1 1 1 )
— (i, 2;) — —L( Dy ’——Ehw* i — (P " > g
L g 2) = g, ) = bl 2 + bl ) > ol = W]

Durch die Lipschitz-Bedingungen kénnen wir abschéitzen
Uhuis i) = Llhwe, 2) < pl|w' =W und by, 2") = U(hw, ') < pllw’ — w7

Also ' '
2p|lw' — w*|| = mol|lw' —w*|?

Ein technischer Unterschied ist, ob die (nun versteckte) Verschiebung der Hyperebene auch regularisiert wird
oder nicht. Wir ignorieren dies.
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und somit

Das heif}t, es gilt auch

Uhsis zi) = Uhs, zi) = Ui, 21) = L, ) < pllw' = w*|| <

4 Fazit

2p?
mo

Wie wir gesehen haben, kann Regularisierung also Overfitting vermeiden. Anzumerken ist je-
doch, dass die Regularisierung nicht zu stark gewéhlt werden darf. Anderenfalls wird der Trai-

ningsfehler grof}, es tritt also Underfitting ein.

Referenzen

e Understanding Machine Learning, Kapitel 13.3-13.4

e Foundations of Machine Learning, Kapitel 14.3 (weitergehend)
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Boosting

Thomas Kesselheim Letzte Aktualisierung: 16. Juni 2020

Beim maschinellen Lernen kommt es héufig vor, dass man in der Lage ist, Datenpunkte
einigermaflen gut zu klassifizieren aber nicht genau genug. Ein Grund dafiir kann sein, dass
Hypothesen verwendet werden, die nicht ausdrucksstark genug sind, um Datenpunkte von ein-
ander zu unterscheiden. Heute werden wir eine sehr hilfreiche Technik kennenlernen, die die
Genauigkeit auf der Trainingsmenge deutlich verbessert, das sogenannte Boosting.

1 Ein einfiihrendes Beispiel

Schauen wir uns zunéchst ein einfaches Beispiel an. Es mag sich zunéichst etwas trivial anfiihlen;
es bedarf aber hoffentlich nicht zu viel Phantasie, um zu sehen, dass solche Probleme auch in
komplexeren Szenarien auftreten.

Betrachten wir den Fall von bindrer Klassifikation von Punkten aus den reellen Zahlen R.
Zu Beginn haben wir nur Schwellenwertfunktionen zur Verfiigung. Dabei handelt es sich um
Hypothesen der Form:

e T

-1 fallsz<a -1 fallsz >a
1 falls x < a

Wir kénnen solche Hypothesen auch sehr knapp ausdriicken iiber zwei Parameter w; € R,
wy € {—1,1}, sodass hy, w,(z) = we - sign(z — wy).!

Nehmen wir nun weiter an, dass die Grundwahrheit eigentlich ist, dass alle x € [a, b] positiv
sind und alle = ¢ [a, b] negativ sind. Auch in diesem sehr einfachen Fall kénnen wir im Allgemei-
nen keinen Trainingsfehler unter 1 erreichen. Falls beispielsweise S = {(—1,—1), (0,+1), (1, 1)}
wird immer einer der Punkte inkorrekt klassifiziert werden.

Hingegen wird eine Linearkombination von Klassifikatoren gute Ergebnisse liefern. Ist ir-
gendeine Trainingsmenge S = {(z1,%1),-- -, (Tm, ym)} gegeben, definieren wir h* mithilfe eines
beliebigen z < min; x; iiber

h*(x) = sign (hg1(z) + hp—1(z) + hs—1(x))

Nun ergibt sich fiir € [a,b], dass hq1(x) = hp —1(x) =1, h, _1(x) = —1. Also h*(z) = 1. Fiir
x € (z,a) U (b,00) ergibt sich h*(z) = —1. Somit ist fur alle ¢ garantiert, dass h*(z;) = y; und
damit errg(h*) = 0. Trotzdem handelt es sich nicht um die Grundwahrheit: Unterhalb von z ist
die Klassifikation falsch.

Unser heutiges Ziel wird sein, diese Idee auf allgemeine Hypothesenklassen zu verallgemei-
nern.

Wir nehmen an, dass die Signum-Funktion +1 an der Stelle 0 ist.
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—_— Oo——0—0—
| | |
z a b
—eo— -—o—

2 Problemstellung

Uns ist eine Trainingsmenge S = {(z1,91),-- -, (Tm,Ym)}, i € X, y; € {—1,+1} fiir alle 1,
gegeben und wir mochten eine Hypothese h berechnen, sodass errg(h) = L|{i | h(z;) # v;}|
nah an 0 liegt.

Wir haben allerdings nur einen schwachen Lernalgorithmus zur Verfligung. Als Eingabe
erhélt er beliebige Gewichte pq,...,pm > 0 mit ) . p; = 1 (Die Gewichte definieren also eine
Wabhrscheinlichkeitsverteilung iiber §). Daraufhin berechnet er eine Hypothese h,,, sodass

1
errp(hy) = Z pis 5=
izhp () #Ys

fiir ein festes v > 0.2 Fiir p; = % ist err, genau der Trainingsfehler. Das heifit, die Hypothese
hy, stellt sicher, dass eine gewichtete Version des Trainingsfehlers klein ist.

Beispiel 14.1. Betrachten wir wieder das Fingangsbeispiel mit Schwellenwertfunktionen, aber
die Grundwahrheit ist definiert dber ein Intervall [a,b]. Wir werden nun zeigen, dass die Schwel-
lenwertfunktion h, die errp(h) minimiert, die obige Garantie mit v = % erfillt. Das heifit, ein
Algorithmus, der den gewichteten Trainingsfehler auf Schwellenwertfunktionen minimiert ist ein
schwacher Lernalgorithmus, wenn die Grundwahrheit durch ein Intervall definiert ist.

Um ~ = % zu zetgen, stellen wir fest, dass fiir jeden Vektor p und alle a < b gilt

Zpiﬁé oder Z pigé oder Zpig

1:x;<a i:a<z;<b iy >b

W =

Zwei der drei Arten von Datenpunkten (unter a, zwischen a und b, tiber b) kénnen wir leicht
durch eine Schwellenwertfunktion richtig klassifizieren. Der kleinste Fehler wird also hdchstens
% = % — % sein.

Wir werden zeigen, dass ein solcher schwacher Lernalgorithmus ausreicht, um einen starken
Lernalgorithmus zu entwerfen: Gegeben ein € > 0 und eine Trainingsmenge S wird er den
schwachen Lernalgorithmus nutzen, um Hypothesen hi,...,hr und «1,...,ar zu berechnen,
sodass h* mit h*(x) = sign(aihi(x) + ... + arhp(x)) die Bedingungen errg(h*) < e erfiillt.

3 Idee fiir einen Algorithmus

Wir nehmen nun an, dass uns ein schwacher Lernalgorithmus gegeben ist, und wollen auf dieser
Basis einen starken Lernalgorithmus entwickeln. Die Eingabe fiir diesen ist eine Trainingsmenge

S = {(xla yl)a ) (xma ym)}
Unser Algorithmus ruft also den schwachen Lernalgorithmus wiederholt auf der Trainings-

1) _

menge mit unterschiedlicher Gewichtung auf. Anfinglich setzen wir p;”’ = % fiir alle . Das

2Das Boosting-Framework kann erweitert werden um die Annahme, dass diese Schranke nur mit gewisser
Wahrscheinlichkeit eingehalten wird.
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heiflt, der schwache Lernalgorithmus minimiert den Trainingsfehler so gut es ihm moglich ist.
Wir erhalten eine Hypothese hi. Wir wissen nun, dass h; falsch liegt auf hochstens (% —y)m
Punkten in S. Anders formuliert ist hy auf etwas mehr als der Halfte der Punkte in S korrekt.

Nun rufen wir den schwachen Lernalgorithmus erneut auf. Die Idee ist nun p(?) so zu setzen,
dass pz(?) > %, falls hq(z;) # yi, und pz(?) < %, falls hq(z;) = y;. Das heifit, in dieser Ausfithrung
soll der schwache Lernalgorithmus sich mehr auf diejenigen Punkte konzentrieren, die bislang
falsch klassifiziert wurden.

Wir miissen nun angeben, wie sich die Gewichte p

o
Y die sich nicht zwangslaufig zu 1 aufsummieren. Es ist immer p(t) = wgt)/ W®  wobei W®

i
die Summe aller wm ist.
t

ergeben. Wir nutzen dazu Gewichte

w;
(3
Das Gewicht wg ) driickt aus, wie oft Datenpunkt ¢ von den Hypothesen h, ..., h;—1 falsch
klassifiziert worden ist. Je grofler es ist, desto mehr dieser Hypothesen lagen falsch. Entsprechend
wichtiger ist es, dass der schwache Lernalgorithmus diesen Punkt richtig klassifiziert, wenn er
h: berechnet.

Konkret ist wgl) =1 fiir alle ¢. In Schritt ¢ werden die Gewichte iiber die Regel

wZ(tJrl)

®)

%

{e_"tw(t) falls hy(z;) = y;

etw sonst

angepasst. Dabei ist 7, > 0 fiir alle Punkte gleich und abhéngig vom aktuellen Fehler. Fiir die
spétere Rechnung konnen wir dies etwas knapper schreiben. Wegen

+1  falls he(x;) = s

—1  sonst

yiht(zi) = {

ergibt sich
'LUZ(H—I) — wgt)e_"]tyiht(xi) )
Diese Art, Gewichte mittels multiplikativer Verinderung anzupassen, ist beim Entwurf von
Algorithmen relativ verbreitet. Sie begegnet uns auch bei Algorithmen fiir ganz andere Proble-
me. Die Zusammenhénge kénnen wir an dieser Stelle leider nicht diskutieren.

4 AdaBoost

Der Algorithmus AdaBoost (fir Adaptive Boosting) benutzt genau diese Ideen. Er lautet wie
folgt.

(1)

)

e In Schritt t=1,...,T

e Initialisiere w;”’ = 1 fiir alle ¢

Berechne W) = ZZL w(t)7 P,(t) = wft)/W(t)

i

Sei h; das vom schwachen Lernalgorithmus auf p® berechnete Ergebnis

Berechne € = 3,4, (5) 24, pgt) (Fehler von h; auf p*))
Sei n, = %ln (é — 1)

— Aktualisiere Gewichte w

(t+1) _ w(t)e—myiht(wi)

e Gib h* aus, definiert {iber h*(x) = sign (Zthl ntht(:c))
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Satz 14.2. Der Algorithmus AdaBoost garantiert errg(h*) < exp(—2+2T).

Zur Erinnerung: v stammt aus der Garantie des schwachen Lernalgorithmus. Interessanter-
weise braucht der Algorithmus es nicht zu kennen.

Beweis. Sei gi(z) = S4_, nihy (x). Durch diese Definition sind wgt) = e ¥i9t-1(#i) and h*(z) =
sign(gr(z)).

Wir betrachten, wie sich die Summe der Gewichte, W) = > wgt), iiber die Zeit veréndert.
Wir werden zeigen, dass gilt

WD < o2 ®  fir alle t € {1,....1} . (1)

Betrachten wir zunéichst, wie diese aus dieser Ungleichung die Aussage des Satzes folgt. Der
Algorithmus liuft fiir 7 Schritte. Aufgrund von Ungleichung (1) gilt im Anschluss W+ <
e~ 2T (1) — o=29°T,,

Dariiber hinaus gilt fiir alle ¢ mit h*(x;) # y;, dass y;gr(z;) < 0, denn das Produkt zweier
reeller Zahlen mit unterschiedlichem Vorzeichen ist immer nicht-positiv. Das bedeutet, dass fiir
diese ¢ auch wZ(TH) = ¢ %i97(%i) > 1. Fiir alle andere 7 nutzen wir, dass wZ(TH) > 0. So erhalten
wir insgesamt W(T+D > |{i | h*(z;) # »;}| und damit

errg(h*) < iW(T'H) <e 2T
m
Die Aussage des Satzes ist damit bewiesen.
Damit miissen wir also nur noch Ungleichung (1) zeigen. Die Summe der Gewichte nach
Schritt ¢ ist

m

m
WD § H'l) _ § () s —yinehe (z)
= 'LUi (] .
=1

Das heift, die Anderung ist

W t+1) m w(t)

i = 2 ZP ernhie) = 37 pfeg 37 plen

=1 i:he(zi)=y; i:he(x)£yi
Gemaéf Definition Zi:ht(azi)#yi pgt) =¢ und e’ = /1/¢ — 1. Also
W(t+l) 1

N (1 —€)e ™ +ee™ = (1—¢)

71/674—&\/ 1/6,5— 1

/ 1—e
1—6t 1 6+€t t 1—6,5).
— &

Der schwache Lernalgorithmus garantiert uns, dass ¢ < % — ~v und somit

2

(t+1)
W;m) =2vea(l—a) < 2\/(; a 7) (1 +7> = V1-42 < Vet =’

Dies zeigt Ungleichung (1) und damit ist die Aussage bewiesen. O
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5 Die Schattenseiten

Wir haben nun hergeleitet, dass wir auf jeder Trainingsmenge S einen Trainingsfehler von
hochstens exp(—272T) erhalten werden, wenn wir T' Iteration von AdaBoost verwenden. Es
liegt nun nahe, T so gro3 wie moglich zu wihlen, weil dadurch der Fehler kleiner und kleiner
wird. Dieser kleinere Fehler kann jedoch durch Overfitting zustande kommen.

Formaler gesprochen: Die VC-Dimension der Klasse von Hypothesen, die AdaBoost in T
Iterationen berechnen kann, wéchst in 7. Betrachten wir dazu X = R und ein beliebiges m €
N. Wenn T im Verhiltnis grof3 genug ist, dann kann Boosting von Schwellenwertfunktionen
m Punkte mit beliebigen Labels versehen. Das heifit, die VC-Dimension ist mindestens m in
diesem Fall. Hierzu stellen wir fest, dass v = ﬁ gilt, wenn wir das Label eines Punktes richtig
setzen und bei mindestens der Héilfte der {ibrigen Punkte. Mit 7" > #ln@m) erhalten wir
errg(h*) < 5. Also muss errg(h*) = 0 sein.

Insgesamt heiflt dies, dass man vorsichtig sein muss, wenn man Boosting anwendet: Es ist ein
hilfreiches Werkzeug, um besser klassifizieren zu kénnen, aber es gibt den bekannte Abwigung

zwischen Trainingsfehler und Overfitting.

Referenzen

e Understanding Machine Learning, Kapitel 10
e Foundations of Machine Learning, Kapitel 7

e Freund, Yoav; Schapire, Robert E (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences. 55:
119. (Original AdaBoost-Paper)
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Komposition

Anne Driemel Letzte Aktualisierung: 18. Juni 2020

Wir haben in der letzten Vorlesung das Boosting kennengelernt, welches schwache Lernalgo-
rithmen miteinander kombiniert um einen starken Lernalgorithmus zu erhalten. Beim Boosting
ergibt sich eine neue Hypothesenklasse aus den méglichen Linearkombinationen der Hypothe-
senklassen der benutzten schwachen Lernalgorithmen. Allerdings erzeugt das Boosting auch
eine hohere VC-Dimension und somit die Gefahr, dass Overfitting geschieht. Heute werden wir
genauer analysieren, wie sich die Komposition mehrerer Hypothesen auf die VC-Dimension der
resultieren Hypothesenklasse auswirkt. Wir betrachten neben dem Boosting auch andere Arten
der Komposition.

1 Achsenparallele Hyperquader

Wir schauen uns zunichst die Klasse der Schwellenwertfunktionen in R? an und zeigen eine
obere Schranke fiir die VC-Dimension. Schwellwertfunktionen kénnen kombiniert werden, um
Hyperquader darzustellen. Dies wird uns als einleitendes Beispiel dienen, bevor wir auf komple-
xere Kompositionen von Hypothesenklassen eingehen.

Sei die Klasse der Schwellenwertfunktionen in R definiert als Menge von Funktionen der
Form hjqp: RY— {+1, -1} mit 1 <i<d,a €R, be {+1,~1} und

hi,a,b(xl, e

{+b falls =; > a
7xd) ==
—b  sonst

Eine Schwellenwertfunktion h;,; entspricht der Partitionierung der Grundmenge durch eine
achsenparallelen Hyperebene. Wir definieren die Klasse der Hyperquader in R? als Menge von
Funktionen hap : R — {+1,—1} definiert durch Vektoren a = (aj,...aq) € R? und b =
(b1, ...bg) € R? mit a; < b; fiir alle 1 <4 < d und

hav(x1,...

+1 fallsVi:a; <x; <b;
,de) -

—1 sonst

Es ist leicht zu sehen, dass jeder Hyperquader durch eine Komposition von 2d Schwellenwert-
funktionen darstellbar ist. Wie kénnen wir nun leicht obere Schranken fiir die VC-Dimension von
Hyperquadern zeigen? Wir analysieren zunéchst die VC-Dimension der Schwellenwertfunktion.

Lemma 15.1. Sei H die Klasse der Schwellenwertfunktionen mit Grundmenge R®. H hat VC-
Dimension hdchstens max(2logsy d, 8).

Beweis. Sei R das zu H zugehorige Mengensystem und sei A C R? eine Menge, die von R
aufgespalten wird. Zur Erinnering, das heifit dass fiir jedes A’ C A eine Menge r € R existiert,
sodass A" = r N A. Ziel ist es eine obere Schranke fiir |A| zu zeigen, denn die VC-Dimension ist
definiert als die Kardinalitéit der grofiten aufgespaltenen Menge. Dafiir sei ¢t = |A|.

Wir interessieren uns also fiir die Anzahl der verschiedenen Mengen r N A mit » € R, also
die Grofe der Menge R|a. Gleichzeitig wissen wir, dass es genau 2! verschiedenen Teilmengen
von A gibt, die damit dargestellt werden. Es muss also gelten

2t§ "R’A‘
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Daraus wollen wir eine obere Schranke fiir ¢ ableiten.

Die wichtige Beobachtung ist nun, dass es hochstens 2dt verschiedene nicht-leere Teilmengen
von A gibt, die durch eine achsenparallele Hyperebene abgespalten werden kénnen, da A in jeder
Dimension hochstens ¢ verschiedene Koordinaten hat. Das heif3t

|R|a| < dt.

Also ist 2 < 2dt. Nun machen wir eine Fallunterscheidung. Angenommen, dass ¢ < d. Dann
ist 2¢ < 2d%. Durch Logarithmieren auf beiden Seiten ergibt sich ¢ < 2log, 2d. Der zweite Fall
ist, dass t > d. Daraus ergibt sich analog ¢t < 2log, 2t. Diese Ungleichung kann fiir t € N nur
erfiillt werden wenn ¢ < 8.

Wir haben also hergeleitet, dass

t < max(2log, 2d, 8)

Da dies fiir beliebige Mengen A gilt, die durch R aufgespalten werden, folgt die obere
Schranke fiir die VC-Dimension nun direkt. O

2 Komposition

Definition 15.2 (Komposition). Sei X eine feste Grundmenge und sei C eine Klasse von Funk-
tionen der Form f : {+1,—1}* — {+1,—1}. Sei H eine Hypothesenklassen mit Grundmenge
X und sei R das zugehdrige Mengensystem. Sei Hco die Hypothesenklasse aller Funktionen
g: X — {+1,—-1} mit

g(z) = f(hi(z),...,hx(x)) und hy,...,hx € H,feC
Wir bezeichnen mit Ro das zugehdrige Mengensystem.

Beispiel 15.3. Im Fall von Boosting, ist die Klasse C die Menge aller Funktionen der Form
frs-o o uk) = sign(d 2 <jp qiyi) mit a; > 0. Der Fakt, dass dies einer Komposition nach
Definition 15.2 entspricht, ist dabei unabhdngig davon, wie die Gewichte o; gewdhlt werden.

Wir betrachten zunéichst den Fall, dass die Klasse C nur aus einer festen Funktion besteht,
zum Beispiel der Funktion die in dem zugehorigen Mengensystem die Schnittmenge der positiven
Mengen erzeugt:

+1 falls F =k
—1 sonst

f(yla---yyk)—{ (1)

Wir bezeichnen die Komposition in dem Fall einer festen Funktion f mit H ¢, beziehungsweise
das Mengensystem mit Ry.

Beispiel 15.4. Sei H die Klasse der Schwellenwertfunktionen und sei f definiert wie in (1)
mit k = 2d. Dann ist Ry die Menge aller Hyperquader in R?. Das heifst, die Menge enthilt alle
beschrinkten Hyperquader und zusdtzlich solche, die in mindestens einer Richtung unbeschrinkt
sind.

Beispiel 15.5. Sei R das Mengensystem aller Halbrdume in R? und sei f definiert wie in
(1) mit k = 3. Dann ist Ry die Menge aller verallgemeinerten Dreiecke in R2. Das heifit, die
Menge enthdlt alle beschrdnkten Dreiecke und zusdtzlich solche Dreiecke, die in einer Richtung
unbeschrdankt sind, siehe Abbildung 1.
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Abbildung 1: Zwei Beispiele von verallgemeinerten Dreiecken.

Wir zeigen nun eine obere Schranke fiir die VC-Dimension von einfachen Kompositionen,
also Kompositionen mit einer festen Funktion f. Dafiir zeigen wir erst ein Hilfslemma. Wir
notieren mit In x den natiirlichen Logarithmus zur Basis e.

Lemma 15.6. Firxz >0 undu €R gilt t <ulnx — z <2ulnu

Beweis. Wir nutzen, dass fiir jedes x > 0 gilt, dass Inz < /.

z<ulnz
= x < u\/x
= lnxglnu—i—%lnw
— %lnxglnu

— Inz <2Inu

Die Aussage folgt nun durch einfaches Einsetzen. O

Satz 15.7. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension hdchstens
d mit 3 <d < oo. Sei f:{+1,—1}¥ — {+1,—1} eine feste Funktion mit k > 3. Die VC-
Dimension der Komposition Hy ist hochstens 4dk In(2dk).

Beweis. Sei A C X eine Menge, die von dem zugehorigen Mengensystem Ry aufgespalten wird.
Wir folgen nun derselben Strategie wie in dem Beweis zu Lemma 15.1. Die Herausforderung
besteht darin, eine obere Schranke fiir ‘Rf| A} zu finden. Zur Erinnerung, diese Menge ist wie
folgt definiert.

Rela={rnA | reRs}

Laut Definition des Mengensystems wissen wir, dass fiir jede Menge r € R; Hypothesen
hi,...,hi € H existieren, sodass

r={zeX | f(hi(x),....h(z)) =1}

Also ist
rNA={zecA | f(hla(z),...,hgla(z)) =1}

Daraus folgt, dass die Anzahl der verschiedenen Mengen rNA mit » € Ry nur von Funktionen
in H| 4 abhéingt. Deren Anzahl ist durch die Wachstumsfunktion Iy (¢) beschrénkt. Insbesondere
entsteht eine Menge r N A indem wir k& Hypothesen aus #H|4 auswihlen. Also ist laut dem
Wachstumslemma

dk
Ryla] < [l < (o) < () < e @)

wobei wir nutzen, dass d > 3 angenommen wird.
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Daraus leiten wir ab, dass 2t < t% und durch Logarithmieren mit dem natiirlichen Loga-
rithmus auf beiden Seiten ergibt sich

tIn2 < (dk)Int

Da In2 > 0.5 ergibt sich durch Umformen ¢ < 2dkInt¢. Nun kénnen wir Lemma 15.6 anwenden
und erhalten
t < 4dkn(2dk)

Da dies fiir beliebige Mengen A gilt, die durch das Mengensystem aufgespalten werden,
ergibt sich die obere Schranke fiir die VC-Dimension. O

Aus obigen Satz folgt nun fiir die Mengensysteme in unseren Beispielen, dass die VC-
Dimension von Dreiecken durch eine Konstante beschrinkt ist und fiir die Hyperquader in
R? ergibt sich zusammen mit Lemma 15.1 eine obere Schranke von O(dlog? d).

3 VC-Dimension des Boostings

Satz 15.8. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension hdchstens
d mit 3 < d < oco. Sei C die Klasse von Funktionen f : {+1,—1}* — {+1, -1} der Form
Fyis .- yk) =sign(d 1< < aili) mit o > 0 und sei k > 3. Die VC-Dimension der Komposi-
tion Hc ist hochstens 4(d + 1)kIn(2(d + 1)k).

Beweis. Wir folgen wieder derselben Strategie wie in dem Beweis zu Lemma 15.1. Der Beweis
ist ahnlich zu dem Beweis zu Satz 15.7. Wir miissen allerdings zusétzlich die verschiedenen
Funktionen in C' beachten.

Sei A C X eine Menge, die von R¢ aufgespalten wird und sei ¢t = ‘A‘ Wie zuvor wollen
wir wieder eine obere Schranke fiir die Anzahl der verschiedenen Mengen in R¢|4 finden, und
nutzen, dass 2! < ‘RC| A} gelten muss. Zur Erinnerung,

Rela={rnA | reRec}

Betrachte eine konkrete Teilmenge A’ C A. Falls A’ abgespalten wird, dann existiert eine
Menge r € R¢ sodass A’ = r N A. Die Menge r ist definiert durch konkrete Hypothesen
hi,...,h;r € H und eine konkrete Funktion f € C' mit

r={xzeX | f(hi(z),...,hx(x)) =1}

Wie zuvor haben wir

rNA={zecA | f(hlalx),...,hgla(z)) =1}

Wir wissen aus der vorherigen Analyse im Beweis zu Satz 15.7, dass fiir ein festes f € C
héchstens (ITy(t))* verschiedene Mengen erzeugt werden konnen, weil wir uns auf die Funktio-
nen in H|4 beschrénken konnen.

Ahnlich wollen wir nun auch die Funktionen f € C beschrinken. Dafiir stellen wir zuniichst
eine andere Frage. Wieviele Mengen konnen erzeugt werden, wenn wir k Hypothesen aus H
festhalten und f € C frei wiahlen kénnen?

Seien hi, ..., h; fest und betrachte die Menge

B={ (hi(z),...,hx(z)) | z€ A}
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Beachte, dass ‘B‘ = ‘A‘ =1t.
Wir betrachten nun das Mengensystem R’ mit Grundmenge {+1, —1}* in der jede Menge
definiert ist durch eine Funktion f € C' mit

Ty = { (yl,...,yk)e{—i-l,—l}k ‘ fyr, . yk) =1 }

Betrachten wir dieses Mengensystem genauer, dann stellen wir fest, dass es sich um ein Men-
gensystem von Halbrdumen in R¥, beschrinkt auf die Grundmenge {+1, —1}*, handelt.
Insbesondere ist f definiert durch aj,...,ar € R mit

1 falls Zlgz‘gk a;y; > 0
—1 sonst

f(y177yk):{

Fir w = (a1,...,0%) und u = 0, sowie y = (y1,...,yx) ist also
yery & (wy)>u

Das heift, r¢ enthélt genau solche y € {+1, —1}* die in dem Halbraum liegen, der durch w und
u definiert ist. Da die VC-Dimension von Halbriumen in R¥ gleich k ist, erhalten wir mit dem
Wachstumslemma

¢ k
IR|5| < I (t) < (Z)

Diese Erkenntnis kénnen wir nun verwenden um eine obere Schranke fiir die Anzahl der
verschiedenen Mengen r N A mit r € R¢ herzuleiten. Indem wir k verschiedene Hypothesen
aus H auswihlen, konnen wir hochstens (ITy(¢))* verschiedene Mengen B erzeugen. Jede solche
Menge B entspricht einer Art, den Elementen in A jeweils k Labels aus {+1, —1} zuzuweisen.
Nun kénnen wir fiir jede solche Menge B eine Funktion f auswihlen. Fiir eine feste Menge B
konnen wir dadurch hochstens I1z/(t) verschiedene Mengen erzeugen. Also erhalten wir

dk k
(Relal < () e (t) < <€z> <6Z> < ¢{d+Dk 3

wobei wir nutzen, dass £ > 3 > e und d > 3 > e. Nun kénnen wir wieder Lemma 15.6 benutzen
und erhalten
t <4(d+ 1)kIn(2(d 4+ 1)k)

Referenzen

e Understanding Machine Learning, Kapitel 10.3 (VC-Dimension of Boosting)
e Foundations of Machine Learning, Kapitel 7.3 (VC-Dimension of Boosting)
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Entscheidungsbdume

Anne Driemel Letzte Aktualisierung: 22. Juni 2020

Entscheidungsbdume sind eine beliebte Form um eine Klassifizierung anhand eine Reihe
von Tests darzustellen. Damit kann zum Beispiel auf kompakte Weise dargestellt werden, ob
eine Person, die eine bestimmte Kombination von Krankheitssymptomen vorweist, einen Arzt
aufsuchen sollte oder sich in h#usliche Quaranténe begeben sollte.! Entscheidungsbiume wer-
den in der Praxis oft per Hand von einem Experten erstellt, zum Beispiel im Rahmen einer
Risikoanalyse.

Im Maschinellen Lernen werden Entscheidungsbidume genutzt um komplexe Kompositionen
von einfachen Hypothesen darzustellen. Oft wird als Basis die Klasse der Schwellenwertfunktio-
nen genutzt, also Halbraume die durch achsenparallele Hyperebenen beschrinkt sind. Denkbar
sind aber auch beliebige Halbraume als Basis.

T2 K
Rg
as
R
Ry °
as
[ ]
a9 X
Rl R3 R4
al (o7} X1

Abbildung 1: Beispiel fiir die rekursive Partitionierung der Grundmenge [0,1]? durch einen
Entscheidungsbaum mit der Klasse der Schwellenwertfunktion als Basisklasse.

Diese Funktionen werden nun in Form eines bindren Baumes rekursiv miteinander kombi-
niert. Als Ergebnis entsteht eine rekursive Partitionierung der Grundmenge. Jedem Blattknoten
ist das Label einer Klasse zugewiesen. Um einen Punkt der Grundmenge zu klassifizieren, folgt
man einem Pfad von der Wurzel bis zu dem Blatt, das den Punkt x enthilt und gibt dann das
entsprechende Label aus. Siehe Abbildung 1 fiir ein Beispiel einer Partitionierung fiir den Fall,
dass die Grundmenge [0, 1]? ist.

Der Vorteil einer achsenparallelen Partitionierung gegeniiber einer Partitionierung mit Halb-
rdumen, ist, dass jeder Knoten des Entscheidungsbaumes einem Test beziiglich einer festen
Komponente des Feature-Vektors darstellt. Zum Beispiel kénnte eine bestimmte Komponente
darstellen ob und wie stark ein bestimmtes Krankheitssymptom bei einer Person aufgetreten ist.
Somit ist die vom Lernalgorithmus berechnete Hypothese von Menschen besser interpretierbar.
Daher werden Schwellwertfunktionen auch im Maschinellen Lernen in der Praxis manchmal
gegeniiber allgemeinen Halbrdumen bevorzugt.

!Siehe hier fiir das Corona-Virus
https://www.zeit.de/wissen/gesundheit /2020-03 / Coronavirus-Entscheidungshilfe-2020-03-31.pdf
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1 Hypothesenklasse

Formal kann man die resultierende Hypothese wie folgt definieren. Sei T" ein binédrer Baum mit
k inneren Knoten und Wurzel w, wobei jedem inneren Knoten v eine Hypothese h, € H und
jedem Blattknoten v ein Label ¢, € {41, —1} zugewiesen ist. Sei v ein innerer Knoten und sei
vy, das linke Kind von v in T und sei vg das rechte Kind von v in T'. Definiere die Funktion
gy : X — {+1,—1} fiir einen inneren Knoten v mit

<) = Gug (x) falls hv(X) -1
e {ng (x) sonst

(1)

Falls v ein Blattknoten ist, dann definieren wir g,(x) = £,,.

Die Hypothese g,,, definiert durch den Baum 7" und den assoziierten Hypothesen an den
inneren Knoten sowie den Labelzuweisungen an den Blattern von T, stellt dann einen Ent-
scheidungsbaum mit Basisklasse H dar. Dies ist eine Komposition, &hnlich wie wir sie in der
letzten Vorlesung definiert haben, wobei der Baum T die Kompositionsfunktion definiert. Der
einzige Unterschied ist, dass wir zusétzlich zu der Basisklasse auch die Labelzuweisungen an
den Bléattern haben.

Definition 16.1. Sei By die Menge der gewurzelten bindren Bdaume mit k inneren Knoten und
k 4+ 1 Bldttern, wobei jeder innere Knoten v ein linkes Kind vy, und ein rechtes Kind vg hat,
und genau einen Elternknoten.

Definition 16.2 (Entscheidungsbaum). Sei H eine Hypothesenklassen mit Grundmenge X und
sei R das zugehirige Mengensystem. Sei Hp, die Hypothesenklasse aller Funktionen g, : X —
{+1, -1} definiert wie in (1) durch

(i) einen bindren Baum T € By mit inneren Knoten vy, ... v, und Blittern by, ...bgi1,

(it) Hypothesen hi,...,hy € H und Labels ¢, ...l € {+1,—1}
Wir legen dabei fest, dass w = vy die Wurzel des Baumes T ist und dass, fir 1 < i < k, die
Hypothese h; dem inneren Knoten v; zugewiesen ist, sowie dass, fir 1 <i < k+1, das Label {;
dem Blatt b; zugewiesen ist.

Das folgende Lemma wird uns helfen, eine obere Schranke fiir die VC-Dimension der Hypo-
thesenklasse der Entscheidungsbidume mit & inneren Knoten zu zeigen.

Lemma 16.3. Fiir jede natirliche Zahl k > 1 ist ’BH < k!

Beweis. Wir zeigen dies durch Induktion. Sei k£ = 1. In diesem Fall gibt es nur einen Baum in
B;., ndmlich die Wurzel selbst mit zwei Bliattern. Also ist ‘Bl‘ =1 = 1! korrekt.

Sei k > 1. Wir kénnen jeden Baum T' € By, aus einem Baum 7" € Bj_; erzeugen, indem wir
in 7" einen Blattknoten entfernen und an derselben Stelle einen Knoten mit zwei neuen Blatt-
knoten als Kindern hinzufiigen. Tatséchlich hat der so erzeugte Baum k innere Knoten und k+1
Blattknoten (ein Blattknoten wurde entfernt und zwei neue Blattknoten sind hinzugekommen).
Die Eigenschaft, dass jeder innere Knoten zwei Kinder hat bleibt dadurch gleichermafien un-
beriihrt.

Fiir einen festen Baum 7" € Bj_; gibt es genau k verschiedenen Moglichkeiten solch einen
Baum in By zu erzeugen, da T” genau k Blattknoten hat. Also ist

By| < k- | By
Nun kénnen wir die Induktionsannahme fiir ’Bk_l‘ einsetzen und erhalten
|Bi| <k-|Bp—1| <k-(k—1)! <k

(Es kann passieren, dass der gleiche Baum in By durch zwei verschiedene Baume in Bjy_q
erzeugt wird, aber das stort uns nicht, da wir nur eine obere Schranke zeigen wollen.) ]
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2 VC-Dimension

Satz 16.4. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension d mit d < oo.
Sei k > 2 eine natirliche Zahl. Die VC-Dimension von Hp, ist hochstens 20dk In(10k).

Beweis. Wir nutzen einen &hnlichen Beweis wie in der letzten Vorlesung. Diesmal miissen wir
die Anzahl der verschiedenen Kompositionsfunktionen miteinbeziehen, die durch verschiedene
B&ume in B}, entstehen konnen.

Sei A C X eine Menge, die von Hp, aufgespalten wird und sei t = ‘A| Wir wollen wieder
eine obere Schranke fiir die Anzahl Hypothesen in # g, | 4 finden, und nutzen, dass 2! < ’”H BilA ‘

Laut Lemma 16.3 gibt es hochstens k! verschiedene Baume in Bjy. Weiter miissen wir k
Hypothesen aus H|4 auswihlen. Fiir die Zuweisung der Labels an die k + 1 Blétter des Baumes
gibt es 281 Moglichkeiten. Damit wire eine Hypothese in H B, |4 eindeutig identifiziert.

Wir konnen also die Anzahl der Hypothesen in Hp, |4 abschétzen indem wir die Anzahl
der verschiedenen Baume, die Anzahl der verschiedenen Label-Zuweisungen an die Blatter und
die Anzahl der Moglichkeiten, k Hypothesen an die inneren Knoten zuzuweisen, miteinander
multiplizieren. Es ergibt sich also

dk
Mg, la] < kU250 3] <R 2P (T ()0 < 2R @)

wobei die letzte Ungleichung wieder aus dem Wachstumslemma folgt. Da alle 2¢ verschiedenen
Teilmengen von A dargestellt werden, ergibt sich dhnlich wie zuvor, dass

1 of dk . il ¢ 2dk " k+k+1+2dk ¢ 5dk
ot < pl.okrl (= < kRLopkHL o[ 2 < (= <[
cwa () swe (3 < (5) =(3)

wobei wir hier annehmen, dass t > de, und dass t > dk, sonst ist die Aussage trivial erfiillt.
Wir kénnen nun beide Seiten logarithmieren und erhalten

tln2 < 5dkIn

Da 0.5 <In2, ist also

< 10kIn &

Al

In Lemma 15.6 hatten wir gezeigt, dass fiir jedes £ > 0 und u € R gilt
r<ulnzr — x<2ulnu

Das konnen wir nun mit x = % und v = 10dk anwenden und erhalten
t < 20dkIn(10k)

Da dies fiir jede Menge A gilt, die aufgespalten wird, folgt direkt die obere Schranke fiir die
VC-Dimension. ]

Satz 16.4 besagt, dass die VC-Dimension von Entscheidungsbdumen nur von der Anzahl der
inneren Knoten k& und von der VC-Dimension der Basisklasse abhingt. Gleichzeitig kann man
fiir jede Menge S C R der Grofie m einen Entscheidungsbaum mit £ = m — 1 inneren Knoten
finden, der Trainingsfehler null hat. Das heifit, fiir £ — oo ist die VC-Dimension von Hp, im
schlimmsten Fall unbeschrankt.
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3 Lernalgorithmen

Da bei Entscheidungsbdumen, &hnlich wie beim Boosting, die VC-Dimension mit der Komple-
xitét der Hypothesenklasse steigt, besteht auch hier die Gefahr des Overfittings. Aus diesem
Grund will man in der Praxis die Anzahl der inneren Knoten des Baumes beschréanken.

Das ist aber oft nicht effizient moglich. Es ist zum Beispiel NP-schwer fiir eine gegebene
Menge S C R3 x {+1, —1} und einen Parameter k € N einen optimalen Entscheidungsbaum mit
k inneren Knoten zu finden, wenn als Basisklasse die Klasse der Halbraume angenommen wird.
Das gilt selbst in dem vergleichsweise einfachen Fall, dass die Labels aus der Menge {+1, —1}
kommen und die Dimension der Grundmenge d = 3 ist.

Daher werden in der Praxis Entscheidungsbdume meist heuristisch optimiert, indem die
Knoten nacheinander hinzugefiigt werden, wobei in jedem Schritt die Zielfunktion lokal op-
timiert wird. Der Algorithmus muss lokal entscheiden, welcher Knoten hinzugefiigt wird und
nimmt meist den Knoten, dessen assoziierte Trainingsmenge den grofiten Trainingsfehler hat.
Denkbar ist auch, erst einen grofleren Baum zu bauen und dann heuristisch Unterbdume zu
entfernen. Das Problem dabei ist aber, dass selbst die erste Hypothese im Wurzelknoten die
optimale Losung blockieren kann.

3.1 Greedy-Algorithmus

Wir wollen trotzdem eine einfache Variante dieses Greedy-Algorithmus genauer definieren. Der
Algorithmus bekommt als Eingabe einen Parameter k£ und eine Datenpunkt/Label-Menge S =
((z1,y1),- -+ (Tm,Ym))- Jeder Blattknoten v hat eine assoziierte Menge S, C S, welche nur fiir
die Konstruktion des Baumes verwendet wird.

decisionTree(k,S)
1. Initialisiere T' mit einem Blattknoten v
initLeaf(v,S)
.foriinl...k do
Finde Blattknoten v in T' mit groBtem Klassifizierungsfehler errg, (T')
split(v,T)
. for v in Menge der Blattknoten von 7" do
Entferne die Menge 5, von dem Blattknoten v
. Gebe den Baum T' zuriick

0 NS U W

split(v,T)
1. Berechne eine Hypothese h € H, welche errg, (h) minimiert
Assoziiere mit v die Hypothese h
Entferne die Menge S, von v
Fiige vy, als linkes Kind von v zu T hinzu
Sei Sy, ={ (z,y) €Sy | h(z)=-1}
initLeaf (v, Sy, )
Fiige vg als rechtes Kind von v zu 1" hinzu
Sei Sy, ={ (z,y) € Sy | h(z)=+1}
initLeaf(vr, Sy, )

PPN PO
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initLeaf(v,S)
1. Assoziiere mit v die Menge S
2. Assoziiere mit v das Label welches unter den Punkten in .S, am meisten vertreten ist

3.2 Random-Forest-Algorithmus

Um die Stabilitét des Lernalgorithmus zu verbessen, werden Entscheidungsbdume oft auf zufillig
gewdhlten Untermengen der Trainingsmenge heuristisch berechnet und die entstandenen Hypo-
thesen mit zufillig gewéhlten Gewichten kombiniert. Dieser Lernalgorithmus wird als Random-
Forest-Algorithmus bezeichnet. Die VC-Dimension kann hier wieder durch die Linearkombina-
tion der einzelnen Hypothesen wachsen. Allerdings tritt bei Random Forests das Phénomen des
Overfittings in der Praxis fast nie auf.

Referenzen

e Understanding Machine Learning, Kapitel 18 (Decision Trees)

e Foundations of Machine Learning, Kapitel 9.3.3 (Decision Trees)

e Michael T. Goodrich , Vincent Mirelli , Mark Orletsky , Jeffery Salowe, “Decision Tree
Construction in Fixed Dimensions: Being Global is Hard but Local Greed is Good” Tech-
nical Report TR-95-1, Johns Hopkins University, 1995.
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Néchste Nachbarn

Anne Driemel Letzte Aktualisierung: 25. Juni 2020

Ein grundlegender Lernalgorithmus im Maschinellen Lernen ist der Néchste-Nachbarn-Algo-
rithmus. Die Idee ist sehr einfach. Um einen Punkt ¢ € X auf Basis einer Trainingsmenge
S C X x {—1,+1} zu klassifizieren, berechnen wir den Punkt in S, der ¢ am #hnlichsten
ist und geben das entsprechende Label zuriick. Dafiir miissen wir die Ahnlichkeit zunichst
definieren. Einfacher ist es meist, den Punkt zu betrachten, der den geringsten Abstand unter
einem bestimmten Distanzmafl hat. Wir betrachten hier zunéchst den Euklidischen Abstand.
Unsere Hypothese ist also die folgende Funktion hg : X — {41, —1} definiert durch

hs(z) = v; mit i = arg min ||z — ;||
1<i<m
In diesem Kontext bezeichnen wir x; als den nachsten Nachbarn von x in S.

Diese einfache Variante der Néchste-Nachbarn Hypothese leidet unter dem Problem des
Overfittings. Um dem entgegen zu wirken, werden oft die Labels der k& nichsten Nachbarn
betrachtet, wobei k € N ein Parameter ist. Formal kénnen wir die resultierende Hypothese wie
folgt definieren. Fiir ein z € X sei 7, : {1,...,m} — {1,...,m} eine Bijektion der Menge S auf
sich selbst, sodass fiir alle 7,5 € {1,...,m} gilt

e (1) < 7 (J) = [z = il < flz =24

Das heifit, m, stellt eine Permutation der Menge S dar, welche einer aufsteigend sortierten
Reihenfolge beziiglich des Abstands zu x entspricht. !
Sei N (z) die Indexmenge der k niichsten Nachbarn von z in S. Formal,

Ne(@)={n;'() | 1<i<k}
Die k-NN Hypothese ist die Funktion hgj : X — {41, —1} definiert durch

hs(z) = argmax |{ j € Ny(z) | y; =L}
Le{+1,—1}

Wir bezeichnen das algorithmische Problem, die k¥ nichsten Nachbarn in einer Menge zu
finden als das k-NN Problem.

Obwohl wir immer noch von Hypothesen sprechen, macht es hier keinen Sinn, die VC-
Dimension der entsprechenden Hypothesenklasse zu betrachten. Wir wiirden dann feststellen,
dass die VC-Dimension von der Gréfle von S abhéngt und hétten dann keine Moglichkeit mehr,
im Rahmen des PAC-Frameworks, die minimale Gréfle von S anhand der VC-Dimension festzu-
legen. Nichtsdestotrotz bildet die Klasse der Lernalgorithmen, die auf dem Prinzip der néichsten
Nachbarn basiert, eine grundlegende Methode im Maschinellen Lernen.

!Beachte, dass 7, dadurch noch nicht eindeutig definiert ist, da es nicht fiir jedes z eine eindeutige Permutation
der néchsten Nachbarn gibt. Wir definieren deshalb ausserdem die folgende Bedingung, welche die Permutation
eindeutig macht.

T (i) < 72 (f) und [z — zif| = flz — 25| = i<
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1 Voronoi-Diagramme

Fiir eine feste Menge S lisst sich die Hypothese hg (bzw. hg ) durch ein sogenanntes Voronoi-
Diagram darstellen. Bei der Hypothese hgj sprechen wir dann von einem Voronoi-Diagramm
der k-ten Ordnung.

Definition 17.1. Sei S C R? mit |S| = m. Sei k < m eine natirliche Zahl. Die Voronoi-Region
einer Menge A C {1,...,m} mit |A| =k ist die Menge

Vk(A):{xeRd ‘ Nk(x):A}

Das Voronoi-Diagramm, ist die Unterteilung des Raumes R? in die Voronoi-Regionen fiir alle

ACH{L,...,m} mit |A| = k.

Das Voronoi-Diagram ist also die Unterteilung der Grundmenge in genau die Regionen, fiir
die die Ausgabe des k-NN Problems gleich ist. Jede Strukturierung der Trainingsmenge, die
einen effiziente Beantwortung der Frage nach den k nichsten Nachbarn von einem Anfrage-
punkt x erlaubt, beantwortet implizit die Frage, in welcher Voronoi-Region sich x befindet. Wir
interessieren uns deshalb fiir die Struktur des Voronoi-Diagramms und insbesondere die Kom-
plexitédt des Diagramms. Wir werden feststellen, dass das Voronoi-Diagram fiir kK = 1 und d = 2
eine {iberraschend einfache Struktur hat.

1.1 k-NN auf der Geraden

Fiir d = 1 betrachten wir das arithmetische Mittel zwischen zwei Punkten der Trainingsmenge,
bij = Ii;rxj . Der Wert b; ; unterteilt die Grundmenge in zwei disjunkte Intervalle

I_ = (—OO,biJ) und I+ = (b@j, OO)

Dabei gilt fiir ein beliebiges Paar von Punkten z, 2’ € R\ {b; ;}, dass sie genau dann demselben
Intervall angehoren, wenn sie in der Menge {z;,x;} denselben nichsten Nachbarn haben.

Allgemeiner, kénnen wir die Werte b; ; der Menge ( g ) betrachten, also der Menge aller

Punktepaare aus S. Diese unterteilen die Grundmenge R in eine beschrinkte Anzahl von Inter-
vallen, sodass in jedem Intervall die Permutation 7, fiir alle Punkte x in dem Intervall gleich ist.
Im Voronoi-Diagram der k-ten Ordnung fassen wir all jene Intervalle zu einer Menge zusammen,
bei der die k nichsten Nachbarn, also die Menge Ny (), gleich sind.

Beispiel 17.2. Sei k = 2 und seien x1, 22,23, x4 € R wie folgt

bi2 b13 bags bia bayg b3y

T X2 zs3 Ty

,,,,, | | - - -
I I

Va({z1,22}) Vo({w2, 73}) Vo({z3,24})

Fiir k = 2 haben wir in diesem Beispiel die folgenden nicht-leeren Voronoi-Regionen:

Vo({@1, 22}) = (—00,b1 3] Vo({w2, 23}) = (b1,3, b2,4] Vo({z3, w4}) = (b2,4,00).

Man kann zeigen, dass das Voronoi-Diagramm von m Punkten in R aus genau m — k + 1
nicht-leeren Voronoi-Regionen besteht, die jeweils ein zusammenhéngendes Intervall bilden. Es
hat also hochstens lineare Komplexitéit. Fiir d = 2 kann man allerdings Punktmengen finden, fiir
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Abbildung 1: Es gibt Punktmengen mit mindestens (k — 1)(m — 2k) nicht-leeren Voronoi-
Regionen in der Ebene.

die das Voronoi-Diagramm der k-ten Ordnung mindestens (m — 2k)(k — 1) nicht-leere Voronoi-
Regionen enthilt. Es hat also im schlimmsten Fall mindestens quadratische Komplexitédt. Im
Beispiel in Abbildung 1 gibt es Punkte a1, ..., a; k11 auf der z-Achse und k—1 Punkte auf der
y-Achse, die so gewahlt sind, dass fiir jede Koembination von Indizes (i, j) € {1,...,m — 2k} x
{1,...,k — 1} ein Kreis existiert, der genau die Punkte A;; = {b1,...,b;} U{ai, ..., qijx—j}
enthélt. Der Mittelpunkt dieses Kreises ist also enthalten in der Voronoi-Region Vi (4; ;). Das
bedeutet, dass diese Voronoi-Region nicht leer ist. Also gibt es mindestens (m — 2k)(k — 1)
nicht-leere Voronoi-Regionen.

1.2 1-NN in der Ebene

Fiir den Fall k£ = 1 hat das Voronoi-Diagram eine iiberraschend einfache geometrische Struktur.
Die Punkte b; j, an denen sich die Permutation der néchsten Nachbarn fiir d = 1 dndert, konnen
wir verallgemeinern zu dem Bisektor, der wie folgt definiert ist.

Definition 17.3. Der Bisektor B(p, q) zwischen zwei Punkten p € R? und q € R ist die Menge

Bp,g)={ v eR | [p—al = lq—all |

Der Bisektor enthilt alle Punkte, fiir die der Abstand zum Punkt p und der Abstand zum
Punkt ¢ genau gleich ist. Fiir feste p und ¢ ist der Bisektor eine Hyperebene, wie sich leicht
iiberpriifen lasst:

lp = 2| = llg — |

& Ip — |1 = |lg — =

< (p—z,p—2x)=(¢—2,q—1)

& (p,p) + (2, 2) —2(p,x) = (¢, q) + (z,2) — 2(q,2)
< (p,p) —2(p,x) = (q,9) — 2(q,x)

< 2(q,x) — 2(p,z) = (¢,9) — (p,p)

= (2(¢ —p),x) = (q,9) — (p,p)

g (Wp,g, T) = Upgq
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Abbildung 2: Im Kasten sieht man ein Aussschnitt des Voronoi-Diagramms der schwarzen Punk-
te (k = 1). Der blaue Knoten ist der virtuelle Knoten, der alle unbeschrénkten Kanten verbindet.
Die lila Kanten sind Kanten des dualen Graphen.

mit wy, = 2(q¢ — p) € R? und u, 4 = {q,q) — (p,p) € R.
Der Bisektor unterteilt die Grundmenge in zwei offene Halbrédume.

H_(p,q) = { z € R? ‘ (Wp,q, ) < Upgq } und Hy (p,q) = { zeR? ) (Wp,q, ) > upq }

Dabei gilt fiir ein beliebiges Paar von Punkten z, 2’ € R\ B(p, q), dass sie genau dann demselben
Halbraum angehéren, wenn sie in der Menge {p, ¢} denselben eindeutigen nichsten Nachbarn
haben.

Die Voronoi-Region eines Punktes z; in der Menge S = {z1,...,2,,} ist die Menge der
Punkte, fiir die z; der eindeutige nichste Nachbar ist.?

V()= (] H-(xi ;)
1<jsm
i
Die Voronoi-Region ist also eine zusammenhéngende Menge. Das folgt direkt aus der Konve-
xitdt der Halbrdume und daraus, dass die Konvexitédt von Mengen unter endlichen Schnitten
abgeschlossen ist.

Die Grenzen der Voronoi-Regionen bestehen aus Teilen der Bisektoren. In der Ebene formen
diese zusammen einen Graphen mit Knoten und Kanten. Jeder Punkt auf einer Kante hat dabei
den gleichen Abstand zu seinen zwei nichste Nachbarn. Jeder Punkt auf einem Knoten hat den
gleichen Abstand zu seinen drei nichsten Nachbarn. Wir kénnen die Anzahl der Knoten und
Kanten im Voronoi-Diagramm wie folgt beschréanken.

Satz 17.4. Das Voronoi-Diagramm von m Punkten in R? hat O(m) Knoten und Kanten.

?Mathematisch ist das nicht ganz korrekt, da wir die Voronoi-Regionen etwas anders definiert haben. Die
Mengen unterscheiden sich aber nur am Rand. Wir sehen dariiber um einer einfacheren Definition willen hinweg.
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Beweis. Wir nutzen Eulers Formel fiir planare Graphen. Fiir einen Graphen G mit v Knoten,
e Kanten und f Flichen besagt sie, dass

v—e+ f=2

Wir wollen diese Formel auf den Graphen der die Voronoi-Regionen begrenzt anwenden. Dafiir
miissen wir einen virtuellen Knoten hinzufiigen, der mit allen unbeschrinkten Kanten verbun-
den ist.> Wir wissen, dass f = m, da f die Flichen des Graphen mit den Voronoi-Regionen
korrespondieren. Sei d; die Anzahl der Kanten, die inzident zum iten Voronoi-Knoten sind. Wir
konnen die Summe der Knotengrade auf zwei Arten begrenzten,

v
2e = Zdi > 3v
i=1

da jede Voronoi-Kante zu genau 2 Voronoi-Knoten inzident ist, und da jeder Voronoi-Knoten
zu mindestens zu 3 Voronoi-Kanten inzident ist. Wir nehmen hier an, dass m > 2, sonst ist die
Aussage im Satz trivial erfiillt. Daraus folgt v < %e und daher folgt aus Eulers Formel

2
e:f+v—2§m—|—§e—2

Dies konnen wir umformen zu
e <3(m-—2)

Also ist e € O(m). Daraus folgt auch, da v < 2e, dass v € O(m). O

1.3 k-NN in der Ebene

Fiir £ > 1 kénnen wir und das Voronoi Diagram hoherer Ordnung wie folgt vorstellen. Fiir jede
Region Vi(x;) im Voronoi-Diagram von S betrachten wir das Voronoi-Diagram von S \ {x;}
beschrankt auf die Region Vi (x;). Das gibt uns die Regionen Vo ({z;, z;}) N Vi(z;) fiir alle ¢ # j.
Das kénnen wir rekursiv fortfithren um weitere Voronoi-Diagramme hdherer Ordnung fiir £ > 2
zu finden. Allgemein kann man beobachten, dass die Voronoi-Regionen héherer Ordnung immer

von Teilen der Bisektoren der Menge <g ) begrenzt werden. Insbesondere teilen die Bisektoren

die Ebene in Regionen, sodass in jeder Region die Permutation der néchsten Nachbarn gleich
ist.

1.4 Voronoi-Diagramme in héheren Dimensionen

In hoheren Dimension steigt die Komplexitdt des Voronoi-Diagramms exponentiell mit der
Dimension. Fiir d = 3 kann das Voronoi-Diagram schon quadratische Grofie haben. Dafiir
konstruieren wir zwei windschiefe Geraden g4 und gp, also zwei Geraden die nicht in derselben
Ebene liegen. Sei A = {a1,...,a,} eine Menge von n = [%] Punkten auf g4 und sei B =
{b1,...,0),} eine Menge von n’ = [3] Punkten auf gp. Wir nehmen an, dass zwischen zwei
Punkten a; und a;41 kein weiterer Punkt aus A auf g4 liegt, und &hnlich nehmen wir an, dass
zwischen zwei Punkten b; und b; 1 kein weiterer Punkt aus B auf gp liegt. Nun kénnen wir fiir
jedes Tupel (i,7) € {1,...,n—1} x{1,...,n —1} die Kugel betrachten, die a;, a;+1, b; und b; 41
auf dem Rand hat. Da die beiden Geraden windschief sind, liegen die vier Punkte nicht in einer
Ebene und bestimmen somit eindeutig eine Kugel. Die Kugel enthélt keine weiteren Punkte aus
AU B. Daher ist das Zentrum der Kugel ein Knoten im Voronoi-Diagram von A U B. Daraus
folgt, dass das Voronoi-Diagramm mindestens (n — 1)(n’ — 1) € Q(m?) Knoten hat.

3Wir kénnten stattdessen auch den dualen Graphen betrachten, welcher auch ein planarer Graph ist. Dieser
ist in Abbildung 2 abgebildet. Der virtuelle Knoten entspricht dann der dufleren Fliche.
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Abbildung 3: Links: Voronoi-Diagramm der zweiten Ordnung fiir die Punktmenge aus Abbil-
dung 2; Rechts: Voronoi-Diagramme fiir £k = 1 und k£ = 2 iibereinander gezeichnet.

bj bj+1

B

Abbildung 4: Beispiel einer Konstruktion einer Menge von m Punkten in R3 mit mindestens

Q(n?) vielen Voronoi-Knoten.
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Allgemein, im R? ist die Anzahl der Knoten des Voronoi-Diagramms von m Punkten in
@(m[gw) im schlimmsten Fall. Die Komplexitidt von Voronoi-Diagrammen héherer Ordnung im
R? ist nicht genau bekannt. Es ist aber zu vermuten, dass diese noch hoher ist, als fiir k = 1.

Aus diesem Grund werden in hoheren Dimensionen die k néchsten Nachbarn nicht durch
die explizite Berechnung und Vorverarbeitung des Voronoi-Diagramms bestimmt. Alternativ
konnen alle Abstéinde zu der Menge S explizit berechnet werden, was eine lange Klassifizierungs-
laufzeit hat. Eine andere Moglichkeit ist es, die néchsten Nachbarn approximativ zu bestimmen.
Damit werden wir uns in der néchsten Vorlesung beschéftigen.

Referenzen

e Understanding Machine Learning, Kapitel 19.
e Rolf Klein, Algorithmische Geometrie, Springer, 1996, (Kapitel 5).
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Approximative Nachste Nachbarn

Anne Driemel Letzte Aktualisierung: 1. Juli 2020

In der letzten Vorlesung ging es um eine Klasse von Lernalgorithmen, die auf dem Prinzip
der nédchsten Nachbarn basiert. Zur Erinnerung, die grundlegende Variante dieser Lernalgo-
rithms nutzt die folgende Hypothese hg : X — {41, —1} definiert fiir eine Trainingsmenge
S ={(x1,91) -, (Tm,Ym)} € RY x {~1,+1} durch

hs(x) = y; mit i = arg mind(z, x;),

1<i<m
wobei d : X x X — R> eine Abstandsfunktion definiert. Wir bezeichnen x; als den néchsten
Nachbarn von z in S. Fiir den Euklidischen Abstand hatten wir das algorithmische Problem,
den néchsten Nachbarn zu bestimmen, mithilfe der Voronoi-Diagramme analysiert. Das Voronoi-
Diagramm beschreibt im Grunde die inverse Funktion der Hypothese hg. Da die Komplexitét
eines Voronoi-Diagramms im schlimmsten Fall exponentiell mit der Dimension d wéchst bieten
sie leider keine effiziente algorithmische Losung des Problems an. Es bleibt uns scheinbar nur
die Moglichkeit, die Abstdnde zu allen m Elementen der Trainingsmenge zu berechnen, um die
Funktion hg an einem Punkt x zu evaluieren. Dies wird auch als lineare Suche bezeichnet, da
die Laufzeit in O(dm) ist.

Wir wollen heute eine approximative Variante dieses Problems betrachten. Das Ziel ist es, auf
der Menge S eine Datenstruktur zu berechnen, welche eine effizientere Klassifizierung zulésst,
also eine Klassifizierungslaufzeit besser als die der linearen Suche, wobei wir trotzdem noch dem
Prinzip der néchsten Nachbarn treu bleiben wollen.

1 Lokalitatssensitive Funktionen

Definition 18.1. Sei F eine Klasse von Funktionen der Form h : X — U, wobei auf U eine
Ordnungsrelation < definiert ist, und sei d : X x X — Rx¢ eine Abstandsfunktion. F ist
(r, R, o, B)-lokalititssensitiv beziiglich der Funktion d, wenn fir x,y € X

Procr [h(x) = h(y)] > a  falls  d(x,y) <r (1)
Procs [h(@) = h(y)] < B falls d(z,y) > R (2)

Wir sagen, dass eine Klasse von Funktionen lokalititssensitiv ist, wenn sie (r, R,«, [3)-
lokalitdtssensitiv ist fiir ein a >0, ein 8 <1 und r, R >0 mit r < R.

Idealerweise wollen wir, dass o méglichst grofl ist, dass § moglichst klein ist und dass R/r
moglichst nah bei 1 ist. Die Intuition dahinter ist, dass zwei Punkte, die nah beieinander liegen
dann eine hohe Wahrscheinlichkeit haben, durch ein zufilliges h auf denselben Schliissel abge-
bildet zu werden, wihrend Punkte, die weit entfernt voneinander entfernt liegen eine niedrige
Wahrscheinlichkeit haben, durch ein zufilliges h auf denselben Schliissel abgebildet zu werden.

Lokalitétssensitive Funktionen erlauben es uns, bekannte Suchstrukturen, wie zum Beispiel
Suchbdume, oder Hashing, auf das Néchste-Nachbarn-Problem in hSheren Dimensionen anzu-
wenden. Sei D solch eine Suchstruktur. Wir kénnen dann eine lokalitétssensitive Funktion h
zufillig aus der Klasse F wéhlen und die Schliissel z; = h(x;) fiir jeden Punkt (x;,y;) € S aus
der Trainingsmenge erzeugen. Die Datensétze (x;,y;) speichern wir dann mit dem zugehorigen
Schliissel in der Suchstruktur D. Um den néchsten Nachbarn eines Punktes y € X in S zu
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Abbildung 1: Schematische Darstellung der Unterteilung der Punktmenge S anhand der
Abstéinde zu y. Fiir die Punkte, deren Abstand zwischen r und R liegt, wird in Definition 18.1
kein Aussage gemacht. Sie fallen in den Bereich des Approximationsfehlers.

finden, erzeugen wir den Schliissel z = h(y) und suchen in D nach z. Dafiir ist es wichtig,
dass auf der Schliisselmenge eine Ordnungsrelation existiert, die es erlaubt, die Schliissel zu
sortieren. Beachte, dass die lokalitétssensitiven Funktionen hier nur eine Entscheidungsvarian-
te des Néchste-Nachbarn-Problems 16sen, da die Abstandsparameter » und R fest sind. Fiir
den Euklidischen Abstand lédsst sich dies durch Skalierung der Punktmenge auf alle anderen
Abstandsparameter erweitern.

Insgesamt erinnern lokalitétssensitive Funktionen stark an das Hashing. Sie sollten aber
nicht damit verwechselt werden. Beim Hashing geht es darum, ein Universum U auf eine kleine
Indexmenge {1,...,m} abzubilden. Das Ziel ist, einen Datensatz (Teilmenge des Universums)
in einem Array der Grofle m abzuspeichern und konstante Zugriffszeit auf die Elemente des
Datensatzes zu erreichen. Eine sogenannte Hash-Kollision tritt dann auf, wenn zwei verschie-
dene Elemente im Datensatz auf denselben Schliissel abgebildet werden. Um mehrere Elemente
unter demselben Schliissel zu speichern, kénnen zusétzliche verkettete Listen verwendet werden.
Beim Hashing ist #H also eine Menge von Funktionen h : U — {1,...,m}. Beim sogenannten
uniformen Hashing gilt die folgende Annahme fiir jede zwei z,y € U: Prpecr [h(z) = h(y)] = %
Diese Annahme erlaubt es, die Auswirkungen von Hash-Kollisionen auf die Zugriffszeit zu be-
schrianken. Hash-Kollisionen von nicht-identischen Elementen sollen vermieden werden, da sie
die Zugriffszeit verlangern. Bei lokalitdtssensitiven Funktionen hingegen sind Hash-Kollisionen
sogar erwiinscht, sofern sie vorrangig unter den néchsten Nachbarn auftreten. Oft werden beide
miteinander kombiniert, indem man erst eine lokalitdtssensitive Funktion anwendet und dann
auf den so berechneten Schliissel, eine Hashfunktion anwendet, um die Schliisselmenge effizient
speichern zu koénnen und darin effizient suchen zu kénnen. Wir ignorieren diesen Aspekt hier
und beschrianken uns auf die Analyse der lokalitdtssensitiven Funktionen.

Definition 18.2. Sei X = R. Sei F die Klasse von Funktionen hy, : X — Z mit hy(z) = [x+n],
und mit n € [0,1). Betrachte die Wahrscheinlichkeitsverteilung tiber F, bei der n gleichverteilt
im Intervall [0, 1) gewdhlt wird.

Lemma 18.3. Die Klasse F aus Definition 18.2 ist lokalititssensitiv beziiglich des Euklidischen
Abstandes. Insbesondere gilt fiir jedes x,y € X

Pry, e 7 [hy(z) = hy(y)] = max (0,1 — |z —y])
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Beweis. Wenn z = y, dann ist die Wahrscheinlichkeit dass  und y auf denselben Funktionswert
abgebildet werden gleich 1. Fiir |x — y| > 1 werden = und y immer auf unterschiedliche Funkti-
onswerte abgebildet, egal welchen Wert 1 annimmt. Wir betrachten also den Fall |z — y| < 1.

Sei ohne Beschrinkung der Allgemeinheit < y. Die Werte x und y werden genau dann nicht
auf denselben Funktionswert abgebildet, wenn in dem Intervall zwischen den Werten (z + 7)
und (y + n) eine ganze Zahl liegt. Insbesondere gilt

hy(z) # hy(y) & [z+n] €lz+ny+n)

Betrachten wir die Zufallsvariable 7 definiert durch
T=[z+n] - (x+n)
Dann gilt nach obiger Betrachtung
hy(x) # holy) = 7€[0,y—2) (3)

Welche Verteilung hat also die Zufallsvariable 77

Eine wichtige Beobachtung ist, dass [x + 7] mit n € [0,1) nur zwei verschiedene Werte
annehmen kann, namlich [z + 7] € {[z], [z + 1]}.

Wir betrachten eine weitere Zufallsvariable 7/ = 2 + 7 in den zwei Fillen.

(Fall 1) [7] =[2] = 7 €z, [z]]

(Fall2) [7']=[z+1] = 7 €([z],z+1)

Daraus ergibt sich fir T = [r/] — 7/

(Fall 1) 7 = [z] — 7/

(Fall 2) 7= [z 4+1] — 7/

Es ergeben sich die folgenden Intervalle fiir Werte von 7 in den beiden Fillen.
(Fall 1) 7 € [[[z]] = [2], [z] — 2] = [0, [z] — 2]

(Fall2) 7€ ([ +1] — (z + 1), [z + 1] — [2]) = ([2] — =, 1)

Da n in [0,1) gleichverteilt ist und daher 7/ in [z, + 1) gleichverteilt ist, schlieBen wir
daraus, dass 7 € [0,1) gleichverteilt ist. Nun folgt aus (3), dass wenn |z — y| < 1 ist,

Pry,er [hn(x) # hy(y)] = [ = y]

Daraus folgt
Prhy,ef [hn(l‘) = hn(?/)] =max (0,1 — |z —y|)

Sei t € (0,1) ein Parameter. Es folgt nun, dass die Klasse F aus Definition 18.2 (r, R, «, [3)-
lokalitatssensitiv ist mit a = =1—t und r = R =t. 0

Wir wollen die Definition auf héhere Dimensionen erweitern. Dafiir wihlen wir zufillig eine
Gerade durch den Ursprung und projizieren die Punkte auf den eindimensionalen Unterraum
und wenden die Funktion aus Definition 18.2 auf den Unterraum an. Das geht am einfachsten
indem man einen Kinheitsvektor zufillig gleichverteilt auf dem Einheitskreis wéhlt. Der Ein-
heitskreis S! ist die Menge der Einheitsvektoren in R2. Formal, ist S! = {z € R? | ||z|| = 1}
definiert. Wir konnen einen Vektor u zufillig gleichverteilt aus S! auswiihlen indem wir einen
Winkel ¢ zufiillig gleichverteilt im Interval [0, 27) auswéhlen und u = (cos ¢, sin ¢) definieren.
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Definition 18.4. Sei X = R2. Sei F die Klasse von Funktionen hy, : X — Z mit hyy(x) =
[(x,u) +n], und mit n € [0,1) und u € S'. Betrachte die Wahrscheinlichkeitsverteilung tiber
F, bei der n gleichverteilt im Intervall [0,1) gewdhlt wird und u = (cos(¢),sin(¢)), wobei ¢
gleichverteilt im Intervall [0,27) gewdhlt wird.

Lemma 18.5. Die Klasse F aus Definition 18.4 ist (r, R, a, B)-lokalititssensitiv beziiglich des
Euklidischen Abstandes mit r = %,R =2,a= %,6 = %

Beweis. Zunéchst stellen wir fest, dass
[z, u) = (y,u) | = [{z —y,u) | = [lz =yl - [[ul| - [cos O] = [l —y]| - | cosb],

wobei wir mit # den Winkel zwischen den Vektoren u und (x — y) bezeichnen.
Wir betrachten beide Fille aus der Definition der lokalitatssensitiven Funktionen. Sei 0 <
1

|z —yl| < 5. In diesem Fall, gilt fiir die Wahrscheinlichkeit, dass = und y auf verschiedene

Funktionswerte abgebildet werden

1
Pry, e hun(@) # hug(9)] = | (2 0) = (y,u) | = llz =yl - [cos b] < 5

Also ist
1

Prhu,ne}' [hum(fv) = hu,n(y)] > 9

Im zweiten Fall betrachten wir ||z — y|| > 2. Im Ereignis, dass = und y auf denselben
Funktionswert abgebildet werden, muss gelten

| <$7u> - <3:,u> | <1
Wir setzen ein und formen um und erhalten
1> ||z — yl|| cosf] > 2| cosb)|

Daraus folgern wir, dass |cos | < % gelten muss, in dem Ereignis, dass x und y auf denselben
Funktionswert abgebildet werden. Der Vektor (x — y) ist fest und unabhéngig von der Wahl
der lokalitdtssensitiven Funktion h,, mit u = (cos ¢, sin¢). Insbesondere muss der Winkel 6
gleichverteilt in [0, ) sein, da ¢ gleichverteilt in [0, 27) ist. Also ist

1 T 27 1
Pri, e lhua() = b)) < Pr [[eost] < 3| =Pr o€ [ 7.5 | =3

O]

Die Analyse aus obigem Beweis funktioniert unter der Annahme, dass X = R2. Tatséchlich
kann man aber zeigen, dass eine dhnliche Klasse von Funktionen auch in héheren Dimensionen
lokalitatssensitiv beziiglich des Euklidischen Abstandes ist.

2 Verstiarkung durch Komposition

In den obigen Funktionsklassen fiir den Euklidischen Abstand ist die Erfolgswahrscheinlichkeit
fiir zwei Punkte, die nah beieinander liegen, auf denselben Funktionswert abgebildet zu werden
noch nicht hoch genug fiir praktische Anwendungen. Es ist daher sinnvoll, die Wahrscheinlich-
keiten zu verstédrken indem man eine Komposition von mehreren Funktionen benutzt.
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Abbildung 2: Wahrscheinlichkeit fiir Hashkollisionen fiir feste x,y € X bei Komposition, in
Abhéngigkeit von s = Pryper [h(z) = h(y)]. Links: k-fache UND-Komposition; Rechts: k-fache
UND-Komposition gefolgt von L-facher ODER-Komposition.

Sei k eine natiirliche Zahl. Sei F eine Klasse von (7, R, «, 3)-lokalitéitssensitiven Funktio-
nen. Eine k-fache UND-Komposition ist eine Funktion g : X — U* definiert durch g(z) =
(hi(z),..., hy(z)) mit hy,...,hy € F. Beachte, dass auf U* eine Ordnungsrelation existiert,
sofern auf U eine Ordnungsrelation existiert, zum Beispiel konnen wir die lexikographische
Ordnung annehmen. Dies wird eine UND-Komposition genannt, da g(z) = g(y) voraussetzt,
dass h;(x) = h;(z) fiir alle 1 < ¢ < k. Wir bezeichnen die resultierende Klasse von Funktionen
mit FF.

Zusétzlich konnen wir eine ODER-Komposition betrachten. Dies ist eine Komposition der
resultierenden Datenstrukturen. Sei L eine natiirliche Zahl. Seien g1, ..., g zufillig aus F*
gewdhlt. Wir berechnen fiir jede Funktion g; den Schliissel g;(z) fir jedes z € S der Trainings-
menge und fiigen g;(x) in eine separate Datenstruktur D; ein. Bei einer Anfrage mit einem
Element y € X berechnen wir den Schliissel g;(y) und suchen mit diesem Schliissel in den Da-
tenstrukturen D1, ..., Dr. Die Suche ist erfolgreich, wenn wir ein z € S finden, mit d(z,y) < R.
Angenommen es existiert ein x € S mit d(z,y) < r. Was ist dann die Wahrscheinlichkeit, dass
gi(z) = ¢i(y) fiir mindestens eines der i € {1,...,L}?

Lemma 18.6. Seien k, L € N. Sei F eine Klasse von lokalititssensitiven Funktionen auf einer
Grundmenge X. Sei (g1,...,91) eine k-fache UND-Komposition gefolgt von einer L-fachen
ODER-Komposition mit k - L Funktionen unabhdingig zufillig gewdhlt aus F. Dann gilt fir
jedes x,y € X

Pr(die{l,....L}: gi(z) = g:i(y)] = 1 — (1 — (Pryez [h(z) = h(y))")*

Beweis. Sei z,y € X fest und sei s = Prpcr[h(x) = h(y)]. Sei i € {1,...,L} fest. Die Wahr-
scheinlichkeit, dass g;(x) = g;(y) ist s*, da die Funktionswerte von = und y fiir alle & Funktionen
gleich sein miissen. Betrachten wir nun das Ereignis, dass g;(x) # ¢;(y) fur alle i € {1,..., L}.
Die Wahrscheinlichkeit dafiir ist (1 — s*)%. Die Wahrscheinlichkeit im Satz ist die Gegenwahr-
scheinlichkeit dazu. O

Beispiel 18.7. Betrachten wir die Klasse von Funktionen aus Definition 18.2 fiir den Euklidi-
schen Abstand in R. Seien z,y € R fest und sei s = max (0,1 — |z —y|). Laut Lemma 18.3
ist s ist die Wahrscheinlichkeit, dass x und y auf denselben Funktionswert abgebildet wer-
den. Laut Lemma 18.6 ist die Wahrscheinlichkeit, dass g;(x) = gi(y) fiir mindestens eines der
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i€{l,...,L} gleich 1 — (1 — s*)L. Abbildung 2 zeigt Beispiele von Funktionengraphen dieser
Funktion fiir verschiedene Werte von k und L.
Referenzen

e Jeff M. Phillips, Mathematical Foundations of Data Science, Kapitel 4.6,
http://www.cs.utah.edu/~jeffp/M4D/M4D-v0.6.pdf

e Sariel Har-Peled, Geometric Approximation Algorithms, Springer, Kapitel 15.2,
https://sarielhp.org/book/ (Preprint)
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Zentrumsbasiertes Clustering

Anne Driemel Letzte Aktualisierung: 2. Juli 2020

Bis jetzt haben wir uns in der Vorlesung mit dem Lernen auf Basis von beschrifteten Trai-
ningsmengen S C X x {41, —1} befasst. Dies wird auch als iberwachtes Lernen bezeichnet, da
die Labels der Punkte der Trainingsmenge bekannt sind. Heute werden wir uns mit Algorithmen
zum uniberwachten Lernen befassen. Einem uniiberwachten Lernalgorithmus ist eine Menge
S C X, also eine Teilmenge der Grundmenge gegeben, ohne Labels. Das Ziel ist es, die Menge S
in Gruppen aufzuteilen, sodass, innerhalb jeder einzelnen Gruppe, die Punkte moglichst &hnlich
zueinander sind. Solch eine Aufteilung in Gruppen wird als Clustering bezeichnet. Die einzelnen
Gruppen der Aufteilung werden Cluster genannt. Die Ahnlichkeit kénnen wir wieder mithilfe
einer Abstandsfunktion formalisieren.

Definition 19.1. Sei X eine Menge und sei d : X x X — R>¢ eine Abstandsfunktion. Wir
bezeichnen d als eine Metrik auf X, wenn sie folgende Figenschaften erfiillt:

(i) Ve,y € X :d(z,y) =0& =y

(i) Ve,y € X : d(z,y) = d(y, v)
(i1i) Vx,y,z € X : d(x,z) < d(x,y) + d(y, z) (Dreiecksungleichung)

Die Qualitéit des Clusterings wird mithilfe einer Zielfunktion definiert. Wir betrachten heute
zwei verschiedene Zielfunktionen, die k-Center-Zielfunktion und die k-Means-Zielfunktion. Beide
Zielfunktionen sind zentrumsbasiert, sie betrachten die Abstéinde des Punkte eines Clusters zum
Zentrum des Clusters.

1 Gonzales Algorithmus

Sei X eine Grundmenge und sei d eine Metrik auf X . Das k-Center Problem ist, fiir eine gegebene

Menge S = {z1,...,z,} C X, und einen Parameter k € N mit & < m, eine Menge von Zentren
c1,...,c, € X zu berechnen, welche die Zielfunktion
Geenter (€1, ..., cp) = max min d(z;,c;)

1<i<m 1<j<k

minimiert.

Eine Losung eines zentrumsbasierten Clusteringproblems ist durch eine feste Menge von k
Zentren hinreichend definiert. Jeder Eingabepunkt wird seinem néchsten Nachbarn in der Menge
der Zentren zugewiesen. Somit ergibt sich das Clustering als die Aufteilung der Eingabemenge, in
der jedem Zentrum eine Teilmenge der Eingabemenge zugewiesen ist. Beim k-Center-Clustering
bezeichnen wir den Wert der Funktion ¢eenter(C') fiir eine Losung C' als den Radius des Cluste-
rings. Sei C' = {cy, ..., ¢} eine Losung fiir Eingabemenge S, und sei ¢center(C') = r der Radius.
Die Eingabemenge ist enthalten in der Vereinigung der metrischen Kugeln

U {zeX|d,c) <r}

1<j<k

Abbildung 1 zeigt ein Beispiel fiir den Euklidischen Abstand.

Gongzales Algorithmus berechnet iterativ eine Menge von Zentren. Im ersten Schritt wird
ein beliebiges Element der Eingabemenge als das erste Zentrum ausgewéhlt. In jedem weiteren
Schritt wird ein Eingabepunkt als néchstes Zentrum ausgewéhlt, bei dem das Maximum in
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Abbildung 1: Beispiel eines k-Center-Clusterings mit k& = 3 fiir eine Menge S C R? mit der
Euklidischen Abstandsfunktion. Die gestrichelte Linie zeigt das Paar ¢; € C, x; € S welches den
Radius des Clusterings c1, ¢2, c3 realisiert. Die Abbildung zeigt ausserdem eine vom Gonzales-
Algorithmus berechnete Losung in rot mit dem entsprechenden Radius als rote gestrichelte
Linie.

der Zielfunktion angenommen wird. Die Vereinigung der so gewihlten Zentren wird als Losung
zuriickgegeben.

Gonzales-Algorithmus(S = {z1,...,Zm}, k)
1. T = 1
2. dl,...,dm:OO
3. foriin1l...k do
4 for jin1...m do
5 //d; speichert den Abstand von x; zu den bisher gewdhlten Zentren
6 d; = min(d;, d(xj, zr,))
7. r; = maXlgjgm dj
8 Titl = argMaX)<i<p, dj
9. Return {zs,,..., 25}

Das k-Center-Problem ist NP-schwer, selbst wenn die gewihlte Metrik Euklidisch ist und
die Punkte in einer Ebene liegen. Die Laufzeit des Algorithmus von Gonzales ist in O(km), was
sich leicht {iberpriifen ldsst. Wir nehmen dabei an, dass sich die Abstandsfunktion in konstanter
Zeit evaluieren ldsst. Der Gonzales-Algorithmus kann also nicht immer eine optimale Losung
berechnen, sofern P # N P. Abbildung 1 zeigt ein Beispiel fiir eine Losung, die vom Algorithmus
berechnet wird und nicht optimal ist. Wir werden nun analysieren, wie gut die berechnete Losung
im schlimmsten Fall ist, wir vergleichen sie dabei mit der optimalen L&sung.

Satz 19.2. Sei k € N. Sei C* = {¢1,...,cx} eine optimale Losung des k-Center-Problems

fir eine Menge S = {x1,...,2:m} mit m > k. Seien my,...,Tpr1, SOwie T1,...,T wie vom
Gonzales-Algorithmus berechnet. Dann ist
*
Tk = chenter(xmv ce. 7wﬂ'k) < 2¢center(C )

Beweis. Zunéchst beobachten wir, dass die Variable d; nach dem iten Durchlauf der dufleren
Schleife den kleinsten Abstand von x; zu den gewihlten Zentren xr,, ...,z speichert. Danach
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wird r; als der maximale Wert der Abstéinde di,...,d,, gesetzt. Das ist genau der Wert der
Zielfunktion @eenter (Trys - - - T, ). Damit ist der erste Teil der Behauptung bewiesen.
Daraus folgt auch, dass

"y > >y (1)
Sei k = 1. Fiir jeden Punkt z; gilt laut der Dreiecksungleichung
d(wi, 21) < d(w,c1) +d(c1,71) < 2¢center(CF)
Also gilt dies auch fiir den Punkt, der den Abstand zu x; maximiert. Das heisst,

"
r = 12%}% d(l'ial'l) < 2¢center(c )
Also ist der Satz fiir £ = 1 bewiesen.

Wir wollen nun das Argument mit der Dreiecksungleichung auf & > 1 erweitern. Wir be-
trachten dazu die Menge der gewéhlten Zentren @y, ..., Ty, und zusétzlich den Punkt z, .
Aus dem Schubfachprinzip folgt, dass von diesen k + 1 Punkten mindestens zwei Punkte in
demselben Cluster im optimalen Clustering C* zugewiesen sind. Sei ¢, das Zentrum dieses
Clusters und seien zr, und Tr; die zwei Punkte in dem Cluster. Jetzt konnen wir wieder die
Dreiecksungleichung auf diese drei Punkte anwenden.

d(xﬂwxﬁj) < d(xmy CZ) + d(Cg, -737rj) < 2¢center(c*)

Sei ohne Beschrankung der Allgemeinheit ¢ < j. Beachte, dass in Zeile 7, m; als der Punkt
gewihlt wird, der den Radius der Losung der bisher gewéhlten Zentren @y, ..., xx;_, realisiert.
Insbesondere ist

rio1 = 1;}2}114 d(@r,, 7r,) < d(Xr;, Tr;)

Zusammen mit (1) ergibt sich, dass

T < ri—1 < d(xﬂ'i’xﬂ']') < 2¢center(0*)

2 Lloyds Algorithmus

Im néchsten Abschnitt betrachten wir die Grundmenge R? mit der Euklidischen Metrik.

Definition 19.3. Das k-Means-Problem ist, gegeben eine Menge S = {x1,...,xm} C R?, und

ein Parameter k € N mit k < m, berechne eine Menge c1, ..., ci € R?, welche die Funktion
- 2
Gmean (€1, ... ,c) = ; 1r§nj12k |z — ch
minimaiert.

Lloyds Algorithmus besteht aus zwei Schritten, die immer wieder abwechselnd in einer Schlei-
fe ausgefiihrt werden, bis sich das Clustering nicht mehr dndert (im Pseudocode unten durch
die Boolsche Variable b ausgedriickt). Die zwei Schritte kénnen wie folgt beschrieben werden.
Der erste Schritt berechnet eine optimale Zuweisung der Eingabepunkte zu einer festen Menge
von Zentren. Der zweite Schritt berechnet fiir jeden Cluster einer festen Clusterzuweisung ein
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optimales Zentrum. Die Clusterzuweisung kann in einem m-dimensionalen Array gespeichert
werden. Wir speichern an der iten Stelle den Index des Clusters, dem der Punkt x; zugewiesen
ist.

Lloyds-Algorithmus(S = {z1,...,zmn}, k)
1. Wihle ¢y, ..., ¢ zufillig aus der Menge S

2. Initialisiere S; = S und Ss, ..., S, mit ()

3. repeat

4. b= false

D. // Schritt 1: Berechne optimale Clusterzuweisung zu ci, . . ., Ck
6. foriin 1...m do

7. j = argming ;< d(z;, ;)

8. if z; ¢ S; then

9. Wechsle die Clusterzuweisung von x; zum Cluster S;
10. b =true
11. // Schritt 2: Berechne optimale Clusterzentren fir Sy, ..., Sk
12. for jinl...k do
13. G = |SL]\ inESj Ty
14. until b = false

(] .. ° L] . o o o : ° . ° .. ¢ L] ° o o ::| ® .

Auch das k-Means-Problem ist NP-schwer und Lloyds Algorithmus berechnet nicht im-
mer eine optimale Losung. Insbesondere kann der Algorithmus in einem lokalen Minimum der
Zielfunktion konvergieren. Das obige Bild zeigt zwei verschiedene Losungen, die auf derselben
Punktmenge von Lloyds Algorithmus berechnet wurden. In beiden Fallen ergibt weder die Clus-
terzuweisung, noch die Zentrenberechnung eine neue Losung, also terminiert der Algorithmus.

Ob der Algorithmus in einem lokalen Minimum terminiert, hingt stark von der Initialisie-
rung ab. Daher wird der Algorithmus oft mehrmals ausgefiihrt, wobei die zufillige Initialisierung
mit jeder Ausfithrung neu gewahlt wird. Der folgende randomisierte Algorithmus wird zur In-
itialisierung des Algorithmus von Lloyd benutzt.
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k-Means++-Algorithmus(S = {x1,...,Zm}, k)
1. Wihle 7 zufillig gleichverteilt in {1,...,m}

2. dl,...,dm:OO
3. foriin1...k do
4. for jinl...m do
5. dj = min(dj’ d(a:jv xm))
6. Wihle ;41 zuféllig aus der Menge {1, ..., m} mit der folgenden Verteilung:
Der Index j wird mit Wahrscheinlichkeit p; = ngj 7, ausgewdhlt
=1
7. Return {@q,, ..., 25, }

Ahnlich wie beim Gonzales-Algorithmus werden die Zentren iterativ berechnet. In jedem
Schritt wird ein Zentrum zufillig ausgewéhlt, nach einer Verteilung die sich aus Absténden der
Eingabepunkte zu den bisher gewé#hlten Zentren berechnet. Ein Punkt hat eine hohe Wahr-
scheinlichkeit gewéhlt zu werden, wenn er verhéltnisméfig weit weg von dem Zentrum liegt, das
ihm am néchsten ist. Beim Gonzales-Algorithmus wurde der Punkt gewéhlt, der diese Wahr-
scheinlichkeit maximiert.

Referenzen

e Sariel Har-Peled, Geometric Approximation Algorithms, Springer, Kapitel 4.2,
https://sarielhp.org/book/ (Preprint)

e Jeff M. Phillips, Mathematical Foundations of Data Science, Kapitel 8,
http://www.cs.utah.edu/~jeffp/M4D/M4D-v0.6.pdf

e Understanding Machine Learning, Kapitel 22.2
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Hierarchisches Clustering

Anne Driemel Letzte Aktualisierung: 7. Juli 2020

In der letzten Vorlesung haben wir zwei Beispiele des zentrumsbasierten Clusterings kennen-
gelernt. Beim zentrumsbasierten Clustering messen wir die Ahnlichkeit der Element innerhalb
eines Clusters mithilfe eines Zentrums, der diesem Cluster zugewiesen ist. Eine weitere Charak-
teristik des zentrumsbasierten Clusterings ist die Festlegung auf die Anzahl der Cluster mithilfe
eines Parameters k. Die Wahl des Parameters hat einen Einfluss auf das berechnete Clustering,
was in der Praxis nicht immer gewiinscht ist.

Dies wollen wir heute umgehen, indem wir nach hierarchischen Strukturen in der Einga-
bemenge suchen. Dabei suchen wir nach einer Hierarchie von Partitionierungen (Clusterings)
der Eingabemenge, welche ineinander geschachtelt sind. Das heisst, ein Cluster (Teilmenge der
Eingabemenge) in einer festen Ebene der Hierarchie sollte in einer hoheren Ebene der Hierarchie
nicht wieder geteilt werden, sondern dies sollte nur in tieferen Ebenen der Hierarchie passieren.

Beim zentrumsbasierten Clustering wird die Qualitdt des Clusterings mithilfe einer Ziel-
funktion beschrieben, welche vom Algorithmus minimiert werden soll. Ahnlich miissen wir nun
mathematisch definieren, was die Qualitéit eines hierarchischen Clusterings ausmacht. Wir de-
finieren dafiir drei Eigenschaften, die gegeben sein miissen.

1 Definition

Sei X eine Grundmenge und sei d(-,-) eine Metrik auf X. Ein hierarchisches Clustering einer
n-elementigen Menge S C X ist eine geordnete Menge C = {C1,...,C,} mit den folgenden
Eigenschaften:

(i) (Jede Menge ist eine Partitionierung von 5)
Fiir alle 1 <4 <n hat C; die Form {4;,..., Ap_ij+1} mit

(a) Ulgjgn—i+1 Aj =5 und
(b) fiir j # k ist Aj N A, =0,

(ii) (Die Mengen sind hierarchisch geschachtelt)
Cp, = {S} und fiir alle 1 < i < n und A € C; existiert ein B € Cj11 mit A C B

(iii) (Die Mengen sind optimal)
Fiir alle 1 < i < n maximiert C; die folgende Zielfunktion

YO = B, Wi, 1Y

iiber alle moglichen Partitionierungen von S die aus genau |C;| Teilmengen von S bestehen.

Die Inklusionsrelationen des hierarchisches Clusterings werden oft als Baum dargestellt.
Dafiir definieren wir einen Graphen G = (V, E), mit Knotenmenge V' und Kantenmenge FE C
V' x V. Die Knoten des Graphen sind wie folgt definiert. Fiir jede Teilmenge von S die in einer der
Mengen C; existiert, existiert ein Knoten in V. Der Knoten ist mit dieser Teilmenge eindeutig
assoziiert. Eine Kante existiert zwischen zwei Knoten A € C; und B € C;41 wenn A C B.
Aus den oben definierten Eigenschaften kann man ableiten, dass der Graph ein Baum ist. Wir
legen die Wurzel des Baumes fest als die Menge S. Abbildung 1 zeigt ein Beispiel. Beachte dass
das Clustering C1, ..., C, nicht eindeutig dargestellt sind, sondern nur die Inklusionsrelationen
zwischen den Mengen in |J, -;,, Ci.
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z1
Abbildung 1: Beispiel eines hierarchischen Clusterings einer Menge {z1,...,z19} mit Baumdar-
stellung der Inklusionsrelationen. Das Clustering C1, ..., C), lidsst sich anhand der Baumdar-

stellung nicht eindeutig herleiten.

2 Algorithmus

Wir betrachten einen Greedy-Algorithmus, der die Partitionierungen C1, ... C, iterativ berech-
net. Er startet mit der Partitionierung in der jedes Element der Eingabemenge eine einzelne
Menge darstellt. In jedem Schritt werden die zwei Mengen vereinigt, die den kleinsten Abstand
haben, wobei der Abstand zwischen zwei Mengen A und B definiert ist als der kleinste Abstand,
zwischen zwei Elementen ¢ € A und b € B. Wegen dieser Definition des Abstands wird diese
Art von Clustering auch Single-Link-Clustering genannt. Wir besprechen zunéchst die Korrekt-
heit beziiglich der drei Clustering-Eigenschaften. Danach besprechen wir, wie der Algorithmus
effizient implementiert werden kann.

Single-Link-Clustering(S = {z1,...,z,})
1. Initialisiere C; = {{z1},...,{zn}}
2. foriin 2...n do
3 Finde zwei Mengen A, B € C; welche minge 4 pep d(a, b) minimieren.
4. Sei C41 dieselbe Menge wie C;, nur dass A und B vereinigt sind
5. Return C4,...,C,

Satz 20.1. Die vom Algorithmus berechnete Menge C = {C4,...,Cy} erfillt die Clustering-
Bedingungen (i),(ii) und (iii).

Beweis. Die Bedingungen (i) und (ii) lassen sich leicht durch Induktion beweisen. Wir kon-
zentrieren uns uns auf den Beweis der dritten Bedingung. Wir behaupten, dass die folgende
Schleifen-Invariante gilt:

Behauptung 20.2. Sei A € C; und seien a,b € A. Dann ezistieren Elemente c1,...co € A fiir
ein ¢ € N mita =c1, b= co und d(cj,cj41) < ¢(C;) fir alle 1 < j < . Wir bezeichnen die
geordnete Menge {c1,...,ce} als Pfad.

Wir stellen den Beweis von Behauptung 20.2 hintan und kommen spéter darauf zuriick.

Sei nun C’ eine Partitionierung von S in |C;| Mengen, welche sich von C; unterscheidet.
Es miissen zwei Punkte a,b € S existieren, die in C’ in unterschiedlichen Mengen liegen, aber
in C; in derselben Menge A liegen. Wenn dies nicht der Fall wire, dann wéren alle Mengen
von C’ Teilmengen von Mengen in C;. Da beide Partitionierungen dieselbe Anzahl von Mengen
enthalten und unterschiedlich sind kann das nicht sein.
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Laut Behauptung 20.2 sind a und b in A durch einen Pfad verbunden, der nur kurze Kanten
enthilt. Wir betrachten den Pfad in C’. Es muss entlang des Pfades eine Kante zwischen zwei
Punkten o’ und b’ geben, die in C’ nicht in derselben Menge liegen. Es gilt

C') = mi in _d(a,b) <d(d,V) < ¢(C;

P(C") i, min (a,b) < d(a’,V') < &(Cy)
Daraus folgt, dass ¢(C;) optimal ist. Somit ist die dritte Bedingung unter Annahme von Be-
hauptung 20.2 erfiillt. O

3 Exkurs: Minimale Spannbiume

Fiir die effiziente Berechnung der hierarchischen Clusterings betrachten wir zunéchst minimale
Spannbdume.

Definition 20.3 (Minimaler Spannbaum). Sei G = (V, E) ein Graph mit Kantengewichten
w: E — R>g. Ein Spannbaum von G ist ein zusammenhingender kreisfreier Graph T = (V, E’)
mit E' C E. Ein minimaler Spannbaum ist ein Spannbaum der die Summe der Kantengewichte
> ecr w(e) minimiert.

Wir betrachten den Algorithmus von Kruskal zur Berechnung eines minimalen Spann-
baumes. Dieser Algorithmus ist seiner Struktur nach dem obigen Algorithmus Single-Link-
Clustering sehr dhnlich. Kruskal’s Algorithmus berechnet die Kanten des minimalen Spannbau-
mes iterativ. Er sortiert die Kanten des Graphen aufsteigend nach ihrem Gewicht und bearbeitet
sie in dieser Reihenfolge. Fiir jede Kante testet der Algorithmus ob diese einen Kreis in der bis-
her gewédhlten Kantenmenge erzeugen wiirde. Wenn dem nicht so ist, dann wird die Kante der
aktuellen Menge hinzugefiigt. Die so berechnete Kantenmenge wird als Ergebnis zuriickgegeben.

Kruskal-Algorithmus(G = (V, E), w)

1. Sortiere die Kantenmenge E nach ihrem Gewicht
Seien ey, ..., en, sodass i < j < w(e;) < w(e;)
Sei E' =10
foriin 1,...,m do

if e; erzeugt in (V, E’) keinen Kreis
E' =FE' Ue;
Return (V, E')

SN

Um den Test, ob die Kante e; einen Kreis in der Kantenmenge E’ einen Kreis erzeugen
wiirde, effizient ausfithren zu kénnen, speichert der Algorithmus zusétzlich die Zusammenhangs-
komponenten des Graphen (V, E’). Sei ¢; eine Kante (a,b) € E. Die Kante schliesst in (V, E’)
genau dann einen Kreis, wenn a und b in derselben Zusammenhangskomponente sind. Fiir die
Zusammenhangskomponenten wird eine Datenstruktur zur Verwaltung von disjunkten Mengen
benutzt, welche die folgenden Operationen unterstiitzt.

e Union(A, B) - Vereinigt die Mengen A und B zu einer neuen Menge und gibt diese zuriick.
e Find(x) - Gibt die Menge zuriick in der x enthalten ist.

Wir gehen auf diese Datenstruktur nicht weiter ein. Wichtig ist nur, dass Kruskals Algorith-
mus damit effizient implementiert werden kann. Die Laufzeit des Algorithmus von Kruskal ist
in O(|E|log|E|).

Die folgende grundlegende Figenschaft von minimalen Spannbdumen hilft dabei, zu zeigen,
dass Kruskals Algorithmus einen minimalen Spannbaum berechnet.
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Lemma 20.4 (Schnitt-Eigenschaft). Sei G = (V, E) ein Graph und sei U C E eine Teilmenge
von Kanten eines minimalen Spannbaums T = (V, E") von G. Sei A CV, sodass U keine Kante
enthdlt, die einen Knoten von A mit einem Knoten von V' \ A verbindet. Sei F' die Kantenmenge
{(a,b) € E | a € A,b € V\ A}. Sei e = argmin,cpw(e). Dann ist U U {e} Teilmenge eines
minimalen Spannbaums von G.

Beweis. Angenommen, e ¢ E’. Da T' zusammenhiingend ist, muss es einen Pfad in T geben, der
die Endpunkte von e verbindet. Dieser Pfad muss auch eine Kante in F haben. Sei €’ solch eine
Kante. Wir kénnen ¢’ durch e ersetzen und erhalten den Graphen 7" = (V, E'U{e} \ {¢'}). Wir
koénnen zeigen, dass T" auch ein Spannbaum ist, indem wir zeigen, dass 77 zusammenhéngend
ist und |V| — 1 Kanten enthélt. Die Summe der Kantengewichte von 7" ist

> w(f) —w(e) +wle) < > w(f)

feE feE

Satz 20.5. Kruskals Algorithmus berechnet einen minimalen Spannbaum von G.

Beweis. Wir fithren eine Induktion iiber die Kanten aus E’ in der Reihenfolge, in der sie vom
Algorithmus hinzugefiigt werden. Fiir den Induktionsanfang betrachten wir die erste Kante die
hinzugefiigt wird. Sei e = (a,b) diese Kante. Wir wenden Lemma 20.4 an mit U = () und
A = {a}. Daraus folgt, dass e in einem minimalen Spannbaum enthalten ist.

Nun folgt der Induktionsschritt. Sei e eine Kante, die von Kruskals Algorithmus in Zeile
6 zu der Kantenmenge E’ hinzugefiigt wird. Da e keinen Kreis schliesst, verbindet sie zwei
Zusammenhangskomponenten in E’, seien diese A und B. Da der Algorithmus die Kanten in der
aufsteigenden Reihenfolge ihrer Gewichte betrachtet hat e minimales Gewicht unter den Kanten
zwischen A und V'\ A. Laut Lemma 20.4 ist E'U{e} Teil eines minimalen Spannbaums, sofern E’
Teilmenge eines minimalen Spannbaums ist. Letzteres folgt aus der Induktionsbehauptung. [

4 Anwendung auf das hierarchische Clustering

Sei G = (V, E) ein vollstandiger Graph mit Knotenmenge V' = S. Das Gewicht einer Kante ist
der Abstand zwischen den entsprechenden Elementen in S, also w(a, b) = d(a, b).! Betrachte den
Kruskal-Algorithmus angewandt auf diesen Graphen und betrachte den Single-Link-Algorithmus
angewandt auf S. Bevor wir den folgenden Satz zeigen, miissen wir die Algorithmen noch weiter
spezifizieren. Die Anweisung, welche Mengen in Zeile 3 des Single-Link-Clusterings vereinigt
werden sollen, ist unter Umstédnden nicht eindeutig, wenn es Paare von Elementen mit den
gleichen Abstédnden gibt. Gleiches gilt fiir die Reihenfolge der Kanten in Zeile 2 von Kruskals
Algorithmus. Wir nehmen hier einfach an, dass es eine gemeinsame Reihenfolge der Kanten
gibt, die von Kruskal verwendet wird und die auch vom Single-Link-Clustering verwendet wird,
um zu entscheiden, welcher Abstand am kleinsten ist.

Satz 20.6. Sein = |S|. Seien ey, ...e,—1 die Kanten aus E', in der Reihenfolge, in der sie von
Kruskals Algorithmus der Menge E' hinzugefigt werden. Firl < j < n, sei E; die Kantenmenge
{ei |1 <i<j}. SeienCh,...,Cy die Mengen, die durch den Single-Link-Clustering Algorithmus
berechnet werden. Dann gilt fir alle 1 < j < mn:

(i) Cj ist die Menge der Zusammenhangskomponenten des Graphen (V, E;)

(i1) Fir j <n ist $(C;) = w(e;)
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Abbildung 2: Links: Minimaler Spannbaum fiir die Punktmenge aus Abbildung 1 unter dem
FEuklidischen Abstand. Rechts: Baumdarstellung der Inklusionsrelationen. Die Abbildung zeigt
ausserdem die Menge C; = {{x1, 2, x3}, {x4, 6, 27}, {25, 23, 29, 210} }. In der Baumdarstellung
sind die entsprechenden Knoten markiert, deren Unterbdume die Mengen in C; darstellen. Das
Gewicht der Kante (z3,x4) bestimmt die Zielfunktion, das heisst ¢(C;) = d(x3, x4).

Beweis. Wir fiihren eine Induktion iiber j. Fiir j = 1 ist die Kantenmenge E; die leere Menge.
Die Menge der Zusammenhangskomponenten ist also die Menge der Knoten des Graphen G.
Der Single-Link-Clustering Algorithmus definiert die Menge Cy = {{z1},...,{x,}}. Weiter ist
#(Ci) = ming, .5 d(z;, ;) = w(ey), da die Kante mit kleinstem Gewicht von Kruskal als erstes
zu E' hinzugefiigt wird. Somit ist der Satz fiir j = 1 erfiillt.

Sei n > j > 1. Betrachte die Kantenmengen F; und Eji ;. Aus der Induktionsannahme
wissen wir, dass die Menge C; die durch den Single-Link-Algorithmus berechnet wird, gleich
den Zusammenhangskomponenten des Graphen (V, Ej;) ist. Aus der Konstruktion von E; und
Ej+1 im Satz ergibt sich Ej;1 = E; U {e;}. Wir wollen zeigen, dass e; genau die zwei Mengen
A und B aus Cj verbindet, welche in C}41 zusammenhéngend als die vereinigte Menge AU B
vorkommen.

Betrachte die Vereinigung der Kanten

Fi=J{(ab)eElacAbeV\ A}
AEC]‘

Die Kanten in F} sind genau die Kanten von G, die in (V, E;) keinen Kreis erzeugen. Unter
den Kanten in Fj betrachtet der Algorithmus die Kante mit minimalem Gewicht zuerst. Da
diese keinen Kreis schliesst, wird sie als néchstes hinzugefiigt. Also ist,

e; = argminw(e)

EEF]‘
Da C} eine Partitionierung von V' ist, folgt
w(e;) = min min  w((a,b)) = min min w((a,b
()= min  min w((@b)= min i w(ab)
a€AbeEV\A acAbeB

Da jeder kiirzeste Weg zwischen zwei Elementen in verschiedenen Zusammenhangskomponenten
iiber den Schnitt gehen muss, folgt ausserdem

w(e;) = A,lgiencj aerg,ibréB d(a,b)

! Alternativ kann die Abstandsfunktion auch direkt als die Kiirzeste-Wege-Metrik in einem Graphen G mit
Knotenmenge S gegeben sein. In diesem Fall betrachten wir G direkt.
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Daraus folgt, dass die Kante e; genau die zwei Mengen in C; verbindet, die den kleinsten
Single-Link-Abstand haben. Also ist ¢(C;) = w(e;). O

Korollar 20.7. Kruskals Algorithmus berechnet ein hierarchisches Clustering der Knotenmenge
V' beziiglich der Abstandsfunktion der kiirzesten Wege im Graphen G. Die Laufzeit des Algo-
rithmus ist in O(|E|log|E|). Die Mengen Ci,...,Cy lassen sich mithilfe der Kantengewichte
der Kanten des minimalen Spannbaums eindeutig herleiten. Siehe Abbildung 2.

Beweis von Behauptung 20.2. Der Beweis ist nun sehr einfach. Jedes Paar von Knoten in ei-
ner Menge von C; ist durch einen Pfad in der entsprechenden Zusammenhangskomponente von
(V, E;) verbunden. Da Kruskals Algorithmus, die Kanten in der aufsteigenden Reihenfolge ih-
res Gewichts hinzufiigt, ist das Gewicht von jeder Kante entlang des Pfads hochstens w(e;).
Gleichzeitig ist w(e;) = ¢(C;), wie wir im obigen Beweis gezeigt haben. O

Referenzen

e Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Algorithms, Kapitel 5.1 (Mi-
nimum Spanning Trees)

e Understanding Machine Learning, Kapitel 22.2
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Hierarchisches Clustering II

Anne Driemel Letzte Aktualisierung: 10. Juli 2020

In der letzten Vorlesung haben wir uns mit dem hierarchischen Clustering befasst. Wir ha-
ben dafiir eine Zielfunktion definiert und gezeigt, dass der Single-Link-Clustering Algorithmus
ein optimales Ergebnis liefert. Aulerdem haben wir einen wichtigen Zusammenhang zwischen
minimalen Spannbdumen und dem Single-Link-Clustering gezeigt, der es uns erlaubt, das hier-
archische Clustering effizient zu berechnen.

1 Hierarchisches Clustering und k-Center

Was ist aber, wenn wir ein hierarchisches Clustering mit einer anderen Zielfunktion berech-
nen wollen? Konkret betrachten wir den Fall, dass die dritte Clustering-Eigenschaft wie folgt
abgewandelt ist.

Sei X eine Grundmenge und sei d(+, -) eine Metrik auf X. Ein hierarchisches Clustering einer
n-elementigen Menge S C X ist eine geordnete Menge C = {C1,...,C,} mit den folgenden
Eigenschaften:

(i) (Jede Menge ist eine Partitionierung von 5)
Fiir alle 1 <4 <n hat C; die Form {4;,..., Ap_ij+1} mit

(a) Ulgjgnflﬂrl Aj =5 und
(b) fiir j # kist Aj N Ax =0,

(ii) (Die Mengen sind hierarchisch geschachtelt)
Cp, = {S} und fiir alle 1 < i < n und A € C; existiert ein B € Cj;1 mit A C B

(iii) (Die Mengen sind optimal)

Fiir alle 1 < ¢ < n minimiert C; die folgende Zielfunktion

P(C;) = max ﬂ%{}g max d(c,a)

iiber alle moglichen Partitionierungen von S die aus genau |C;| Teilmengen von S bestehen.

Fiir ein einzelnes Clustering C; ist diese Zielfunktion dquivalent zu der im k-Center-Problem,
welches wir in der vorletzen Vorlesung kennengelernt haben. Fiir jede Menge in C; wird der
Radius einer kleinsten umschliefenden Kugel gesucht, das Maximum {iber alle Mengen bestimmt
die Zielfunktion. Wir vergleichen also jedes Clustering in der Hierarchie mit dem optimalen k-
Center-Clustering. Zusétzlich wollen wir, dass die Mengen hierarchisch geschachtelt sind.

2 Ein Gegenbeispiel

Wir kénnen zunéchst feststellen, dass es Mengen S gibt fiir die keine Losung existiert, die alle
Eigenschaften erfiillt. Wir betrachten dafiir das folgende Beispiel.
Beispiel 21.1. Sei X = R mit d(z,y) = |z — y|, und sei S = {0,4,6,10}. Ein hierarchisches

Clustering von S ist zum Beispiel

Cy= {{O, 4,6, 10}}, C3 = {{07 4}7 {67 10}}7 Cr = {{0}7 {4}, {67 10}}7 Gy = {{0}7 {4}7 {6}7 {10}}'
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Aber hier ist $(C2) = 2, wahrend die optimale 3-Center-Lisung den Zielwert 1 hat:

o({0}, {4,6}, {10}) = 1

Ein anderes hierarchisches Clustering ist

Cy={{0,4,6,10}},C3 = {{0}, {4,6,10}},C2 = {{0}, {4}, {6,10}}, C1 = {{0}, {4}, {6}, {10}}.
Aber hier ist $(C3) = 3, wdhrend die optimale 2-Center-Lisung den Zielwert 2 hat.

¢({0,4},{6,10}) = 2

Wenn wir alle mdoglichen Mengen C' = {C4,...,Cy4} welche die Clustering-Bedingungen (i)
und (ii) erfillen analysieren, dann konnen wir sehen, dass fir jede dieser Liosungen entweder
d(Ca) > 2 oder ¢(Cs) > 3 gilt. Also gibt es kein hierarchisches Clustering, welches Bedingung
(#i7) erfillt.

3 Der Algorithmus von Dasgupta und Long

In der vorletzten Vorlesung haben wir den Algorithmus von Gonzales kennengelernt. Der Algo-
rithmus berechnet die von ihm gewéhlten Zentren iterativ. In jedem Schritt ist das berechnete
Clustering hochstens um einen Faktor 2 schlechter ist als das optimale Clustering. Allerdings
erfiillen die Clusterings nicht unbedingt die Clustering-Bedingung (ii). Wir werden heute den
Algorithmus von Dasgupta und Long kennenlernen. Dieser wandelt die Zuweisungen der Punkte
zu den von Gonzales-Algorithmus berechneten Clusterzentren so ab, dass hieraus ein hierarchi-
sches Clustering wird. Zunéchst miissen wir dazu den Gonzales-Algorithmus leicht abwandeln.

Gonzales-Algorithmus(S = {z1,...,2,})
1. ™ = 1
2. dl,...,dn:OO
3. for7in1l...ndo
4 for jinl...n do
5 //d; speichert den Abstand von x; zu den bisher gewdhlten Zentren
6 d; = min(d;, d(xj, xx,))
7. Ty = MaxXj<j<n dj
8 Ti+1 = argmax <<, d;
9. Return x,,...,Zx, und 71,...,7p

n

Der einzige Unterschied bis jetzt, ist dass wir den Parameter k£ auf n gesetzt haben und die
Ausgabe erweitert haben. Der Algorithmus gibt eine Permutation der Eingabemenge zr,, ..., Zx,
und die Liste der Radien der berechneten Clusterings zuriick. Diese Permutation wird auch
Greedy-Permutation genannt.

Seicy,...,cpmit ¢; = x5, und 7y, ..., 7, die Ausgabe des Gonzales Algorithmus fiir eine Men-
ge S. Wir gruppieren die Punkte nun anhand der Radien in verschiedene Granularititsebenen.
Lg = {Cl}, Lj = { Ci+1 ‘ T € (%,%} } fur] > 1.

Auflerdem definieren wir eine FElternfunktion auf der Menge der Punkte. Die Elternfunktion
definiert einen gerichteten Graphen G auf der Punktmenge, der eine Baumstruktur hat. Die
Wurzel dieses Baumes ist ¢1. Sei die Elternfunktion p: {2,...,n} — {1,...,n} definiert als

L(i)—1

p(i) =argmin< d(ci,¢j) | ¢ € U Lj
1<j<n Pt
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|

Abbildung 1: Schematische Darstellung eines hierarchischen Clusterings von Dasgupta und Long
von der Menge cy,...,cs5 (in der Greedy-Permutation).

wobei L(i) die Granularitétsebene angibt (also den Index der Menge aus Lo, L1, . .. ), in der sich
¢; befindet. Fiir einen Punkt ¢; ist p(i) der néchste Nachbar in der Menge der Punkte, die in
einer niedrigeren Granularitétsebene liegen. Die Knoten von G sind gegeben durch die Menge
{c1,...,c,} und jeder Knoten ¢;, ausser dem Wurzelknoten, hat (genau) eine ausgehende Kante,
ndmlich die Kante (c;, ¢p(;)). Abbildung 1 zeigt ein Beispiel dieses Graphen.

Der Algorithmus von Dasgupta und Long berechnet ein hierarchisches Clustering welches
unsere Clustering-Bedingungen (i) und (ii) erfiillt, wie folgt. Angefangen mit dem Clustering
C1 werden in jedem Schritt immer genau zwei Cluster vereinigt. Hierbei werden die Punkte in
der umgekehrten Reihenfolge betrachtet, in der sie in der Greedy-Permutation auftauchen. Sei
c¢; ein Element dieser Reihenfolge. Dann vereinigen wir genau diese beiden Cluster, die durch
eine Elternkante zwischen ¢; und ¢,(;) verbunden sind. Der Pseudocode des Algorithmus ist wie
folgt.

Dasgupta-Long-Algorithmus(S = {z1,...,2,})
1. ¢1y...,¢nyT1,..., 1y < Gonzales-Algorithmus(S)
2. Berechne Mengen Lo und L; mit L; # ()
3. Berechne Werte der Elternfunktion p(i) fiir alle 1 < i <n
4. Sei C = {{c1},...,{en}}
5. foriin 1...n do
6. Sei j =n —1i+1, sei A € C; die Menge die ¢; enthalt
7 Sei j' = p(j), sei B € C; die Menge die ¢; enthélt
8 Sei C;41 dieselbe Menge wie C;, nur dass A und B vereinigt sind
9. Return C4,...,C,

Eine andere hilfreiche Interpretation des Graphen G in Zusammenhang mit dem hierarchi-
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schen Clustering ist die folgende. Das Clustering C; ergibt sich durch die Zusammenhangskom-
ponenten von G, wenn die Elternkanten entfernt werden, die von den ersten 7 Punkten in der
Greedy-Permutation ausgehen. Statt die Cluster Schritt fiir Schritt zu vereinigen, kénnten wir
uns also auch den umgekehrten Prozess vorstellen, in dem Cluster Schritt fiir Schritt geteilt
werden, indem wir Kanten in G entfernen. Um zu iiberpriifen, ob der Graph G tatséichlich ein
Baum ist, stellen wir die folgenden Uberlegungen an. Da alle Knoten ausser der Wurzelknoten
einen Elternknoten haben, kénnen wir von einem beliebigen Knoten aus, den Elternkanten fol-
gen, bis wir irgendwann am Wurzelknoten ankommen. Also ist der Graph zusammenhéngend.
Gleichzeitig wissen wir, dass der Graph genau n —1 Kanten hat, wobei n die Anzahl der Knoten
ist.

4 Analyse der Qualitit der berechneten Lésung

Wir wollen nun analysieren, wie gut die Werte der Zielfunktion ¢(C1),...,#(C,) auf dem be-
rechneten Clustering sind, wobei wir jedes Clustering C; wieder mit dem optimalen Clustering
mit der gleichen Anzahl von Clustern vergleichen.

Lemma 21.2. Fir alle ¢; € S gilt d(ci, cp4)) < grii=t wobei L(i) die Granularititsebene von
c; angibt.

Beweis. Wir zeigen zuerst eine andere Aussage: Fiir alle j ist der Abstand zwischen ¢; und
1

seinem néchsten Nachbarn in der Menge LoU Ly U ---U L; hochstens 55 Sei ¢;, der Punkt mit
héchsten Index in L;. Dann ist

LQUL1U---ULJ‘:{Cl,...,ck}zlZ

Aus der Analyse des Gonzales-Algorithmus folgt, dass jeder Punkt in S Abstand hochstens
7. zu seinem néichsten Nachbarn in Z hat.

Aus der Definition der Granularitétsebenen folgt, dass cx41 € L; genau dann wenn rj €
(55> 521]- Da cpy1 ¢ Lj, folgt daraus, dass rj, < &}

Der Satz folgt nun indem wir j = L(i) — 1 wéahlen. Insbesondere haben wir hergeleitet, dass
gilt

d(Cz,p(Z)) = 1<j/r£g(li)fl d(CZ',Cj/) < 2L(z)—1

O]

Satz 21.3. Sei 1 < k < n und sei i =n—k+ 1. Sei C* ein optimales k-Center-Clustering
einer Menge S mit k Clustern. Fiir das vom Dasgupta-Long-Algorithmus berechnete Clustering
Ci gilt

P(Ci) < 89(C™)

Beweis. Wir zeigen ¢(Cy) < 4ry. Der Satz folgt dann aus Satz 19.2 (Gonzales-Algorithmus).
Sei ¢; € S fest. Wir folgen den Elternkanten von ¢; bis wir bei einem Punkt in der Menge
Z ={ci1,...,cr} ankommen. Die Menge C; wird vom Algorithmus berechnet. Die Clusterzentren
werden aber nicht vom Algorithmus festgelegt. Wir analysieren die Kosten fiir Clusterzentren
Z und wir weisen ¢; dem Clusterzentrum c,;) zu.

Sei die Sequenz der Indizes auf diesem Pfade ig,2,...,%, mit ¢;, € Z. Das heifit, wir
definieren iy = i, i1 = p(ip), i2 = p(i1), etc. Die Sequenz ig,i1,...,7, ist absteigend, da die
Elternkanten nur auf Element in niedrigeren Granularitdtsebenen zeigen.
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Wir leiten eine obere Schranke fiir den Abstand zwischen ¢; und ¢;, her, indem wir die
Dreiecksungleichung auf die Kanten der Pfade anwenden.

d(Civ Cie) < d(cim Cil) + d(ci1 ) Ciz) +eee d(cizq ) Cie)

Laut Lemma 21.2 konnen wir diese Terme beschranken und erhalten

< T ™ ™
S SLGo)—1 T 9LG—1 T 9L -1

d(CZ‘, Cig)

Da sich der Index der Granularitétsebene mit jeder Elternkante um mindestens 1 verringert, ist
L(ip) = L(i) und L(i;) < L(i) — j. Es folgt

L(i)—1

1 1 1 1 1

deve) < g tgee v tomomm T g0 S L(Z) o
Jj=L(ig—1)—1

Wir ersetzen j' = j — (L(ig—1) — 1) in der Laufvariable der Summe und erhalten

0o
1 ™

[e.e]
1
dleis eir) < Z()Qj’+(L(ie1)1) =y Z 7 < s <4 gEey
] = :

In welcher Granularitétsebene ist also ¢;, ,? Wir wissen, dass ¢;, € Z und also iy € {1,...,k},
da wir den Elternkanten bis zu diesem Punkt gefolgt sind. Also ist iy_1 > k + 1, da wir sonst
schon bei iy_1 in der Menge Z terminiert wiren. Daraus schliessen wir, dass L(ip—1) > L(k + 1),

und daher
71

2(L(k+1))

Weiter ist nach der Definition der Granularitidtsebenen

d(ci,ci,) <4~

T T
¢ €L @rzle(l 1}

277 971

Fir i =k +1 und j = L(k + 1) erhalten wir also r > 5z
Da wir die Schranke fiir jedes x; € S herleiten konnen, folgern wir, dass

1
¢(Ck) < maxmipd(ei,0) < 4 gy <

4ry.
Referenzen

e Sanjoy Dasgupta, Philip M. Long, Performance guarantees for hierarchical clustering.
Journal of Computer and System Sciences, Volume 70, Issue 4, 2005.
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Dimensionsreduktion

Anne Driemel Letzte Aktualisierung: 14. Juli 2020

In vielen Anwendungen sind die Daten, die wir als Eingabe fiir unsere Lernalgorithmen
bekommen, hochdimensional. In der Bildanalyse, zum Beispiel, ist jeder Datenpunkt eine Kom-
bination von vielen Pixelwerten. Jeder einzelne Pixel ist dabei ein eigenes Merkmal und nimmt
somit eine eigene Dimension im Merkmalsraum ein. Gleichzeitig kann man sich leicht vorstellen,
dass der exakte Werte jedes einzelnen Pixels nicht unbedingt fiir die Analyse bendtigt wird. In
der Dimensionsreduktion geht es darum die Daten in einen geeigneten niedrig-dimensionalen
Unterraum zu projizieren, um die Daten vereinfacht darzustellen, wobei die Datenpunkte trotz-
dem moglichst gut erhalten bleiben sollen.

1 Definition der Zielfunktion

Sei S = {x1,...,2,} C R? eine Menge von Datenpunkten und sei & € N ein Parameter mit
k < d. Wir wollen S mithilfe einer Funktion f : R¥ — R? beschreiben, definiert durch p € R¢
und eine d x k Matrix V mit

fO) =p+ VA, mit g e R?
Wir verlangen auflerdem von der Matrix V', dass sie orthonormal ist, das heifit
(i) fiir jeden Spaltenvektor v; von V gilt, dass (v;, v;) = 1
(ii) fiir je zwei Spaltenvektoren v; und v; von V' gilt, dass (v;, vj) =0

Die Funktion f bildet auf eine k-dimensionale Hyperebene im R? ab. Ziel ist es also, die Daten-
punkte in .S innerhalb einer k-dimensionalen Hyperebene angemessen darzustellen. Die Dimensi-
onsreduktion geschieht hier indem wir jedes x; {iber seinen Index dem Vektor )\; assoziieren. Die
Abbildung in den k-dimensionalen Unterraum wird also durch die Wahl der Vektoren Aq, ..., A,
bestimmt. Wie gut unsere Repréisentation von S ist, messen wir mithilfe der Summe der qua-
dratischen Abstidnde. Dies wird in der folgenden Zielfunktion ausgedriickt.

Wir wollen einen Vektor u, eine Matrix V und Spaltenvektoren Ai,..., A, finden, welche
zusammen die Zielfunktion

(Zs(/'l” Vi, ... 7)‘71) - Z Hxl - f()‘l>H2
=1

minimieren. Diese Zielfunktion lisst sich noch vereinfachen. Dazu betrachten wir zunédchst \;
und halten dabei V und g und \; mit ¢ # j fest. Man kann zeigen, dass ¢ fiir

A=V (@i — p) (1)

minimiert wird. Insbesondere ist f(J;), fiir diese Wahl von )\;, die orthogonale Projektion von
x; auf die Hyperebene, die durch g und V' gegeben ist, und damit der Punkt in der Hyperebene
mit dem kleinsten Abstand zu x;. Im néchsten Schritt halten wir V und die Aq,..., A, fest und
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minimieren ¢ iiber alle Werte von u. Hier kénnen wir die partielle Ableitung nach p wie folgt
herleiten. Sei v; € R¢ definiert als v = x; — V) fiir jedes 1 < i < n.

RN . Y - 0§ . 112
2 I = FOIP = 50D s ==Vl

a n
= > |lvi—ul?
a'u =1

= igm—u,%—u)
i=1 a'u

N (D O 2)
= Z(BM(%’I M1)7---,8ud(%,d )

=1

— Z (—2(yi1 —m1), -+ —2(%i,a — Ha))
=1

= > 20vi—n)
=1

n

= Z —2(%1‘ — U — V/\z)

=1

Setzen wir dies gleich dem Nullvektor, dann erhalten wir
1« 1 «
i=1 i=1

Sei 7 = 13" | ;. Setzen wir nun (1) ein, dann erhalten wir

u:x—V(iZVT(xi—u)> =T - VV(T - p)
=1

Das ist dquivalent zu
VVI@—p) =2 —p

Wir konnen hier 4 = 7 wéhlen und diese Gleichung erfiillen, ohne dass die Wahl von V' bertihrt
ist.
Damit ergibt sich fiir unsere Zielfunktion

n

o(V) =l —2) = VVT (i —2)| (2)

=1

Wir kénnen dies so interpretieren, dass wir eigentlich eine Funktion f fiir die zentrierte Menge
S'={z,..., 2} mit 2} = z; — T finden wollen. Wir kénnen vereinfachend annehmen, dass die
Menge S schon zentriert ist. Dann ist T gleich dem Nullvektor und die optimale Hyperebene
geht durch den Ursprung. In diesem Fall ist die Funktion f eine lineare Abbildung und bildet
auf einen linearen Unterraum ab, die durch die Spaltenvektoren von V' aufgespannt wird.
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2 Beispiel

Wir wollen uns der Funktion f zunéchst weiter anhand eines Beispiels ndhern. Abbildung 1
zeigt eine zufillige Auswahl von Bildern einer handgeschriebenen Ziffer Drei, aus dem MNIST
Datensatz. Jedes Bild ist durch einen hochdimensionalen Vektor von Pixelwerten gegeben. Ein
Bild mit h x w Pixeln ist demnach ein Vektor im R"®. Wir wollen diesen Datensatz in der
Parametrisierung einer 2-dimensionalen Hyperebene betrachten, welche die Zielfunktion ¢ mi-
nimiert. Das linke Bild zeigt den Vektor u, also das Bild einer gemittelten handgeschriebenen

3 E

Ziffer Drei. Das mittlere Bild zeigt eine Darstellung des ersten Spaltenvektors v; der Matrix
V', das rechte Bild zeigt eine Darstellung des zweiten Spaltenvektors vo der Matrix V. Beachte,
dass der graue Hintergrund hier ein Artifakt der Darstellung ist. Die Pixelwerte sind in der
Darstellung auf Grauwerte zwischen 0 und 1 abgebildet. Die hellen Pixel der Vektoren vy und
vo sollten also als negative Werte interpretiert werden und dunkle Pixel als positive Werte.

Ein Punkt in der k-dimensionalen Hyperebene, die durch p, v; und ve bestimmt ist, wird
durch einen Parametervektor A = (t1,t2) € R? als

f(t1,t2) = p+ tivg + tavy

dargestellt. Abbildung 2 zeigt das Ergebnis fiir eine Auswahl an Punkten im Parameterraum.

A ][] [0 [ar] QN 0w [ || \sa
G| a|| ||\ (o || g || O || W8] (W0 | by
Qo [OF| (O] |ov| | G| [ | [N G| Lo || O
ol A [P ||| (| O NS (|0 || [N

Co| (e | ||| 3| ol O] [ P | [ | ||| v
][O [ ||| [ [LR] [l [ 49] [ O] [ €3

||| [ o [ | [ |[\N || 00| G| | 03| [
| lva||w| ||| Q| |G| | |\ | [ || (w
G| | |Gyl [Wd| [0 || G| My [V [ [ | [\

Abbildung 1: Zufillige Auswahl des MNIST-Datensatzes von Bildern von handgeschriebenen
Ziffern. Hier ist eine Auswahl getroffen von Beispielen der Ziffer Drei.
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3 3
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Abbildung 2: Links: Punktmenge (gelb) aus dem MNIST-Datensatz (nur Ziffer Drei) projiziert
auf den Unterraum, der durch v; und vs gespannt wird. Rechts: Darstellung der Rekonstruktion
durch die Funktion f(t1,t2) = u+ t1v1 + tave fiir die blauen Gitterpunkte (¢1,t2) im Bild links.
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3 Singularwertzerlegung

Wir wollen eine Matrix V' finden, welche die Zielfunktion ¢ in (2) minimiert. Dazu schreiben
wir unsere Menge von Datenpunkten S = {z1,...,2,} C R? in eine Matrix. Sei A eine n x d
Matrix mit Zeilenvektoren aq,...a, mit a; = (x; — T) mit T = % o fir alle 1 <@ <n.
Wir betrachten zunéchst den Fall £ = 1. In diesem Fall hat die Matrix V nur einen Spal-
tenvektor vy. Dieser Spaltenvektor spannt einen 1-dimensionalen Unterraum, also eine Gerade
durch den Ursprung, und wir betrachten die Projektionen der Eingabemenge auf diese Gerade.

Betrachte das Dreieck mit den Eckpunkten a;, der Projektion y; = v; (v1,a;), und dem
Nullpunkt. Seien §; = ||v1 (v1,a;) || und a; = ||a; —v1 (v1, a;) ||, und ||a;]| dle Seitenlédngen dieses
Dreiecks.

Es folgt aus dem Satz von Pythagoras, dass
B = laill* + of

Damit ist a? = |la;||*> — 8?. Wir suchen nach einem Vektor v; mit ||v1]| = 1, sodass ¢(vy) =
>, o2 minimiert wird. Durch Einsetzen der obigen Beobachtung erhalten wir

argmmZa = argmmz llag]|? — 5% = argmaxZB

vierd T vierd T S —
llogll=1 llogll=1 llorll=1

Um die Summe auf der rechten Seite noch weiter zu vereinfachen, beobachten wir, dass
Bi = [lvr (v, @i} [| = | (v1, aq) |,

da |lvi]] =1 ist. Also ist

Y B2 =) (o a) [P = [|Av?
i=1 i=1
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Das heifit, ¢ zu minimieren ist dquivalent dazu, ||Av;| zu maximieren.
Angenommen, wir kénnten v bestimmen. Betrachte den folgenden Greedy-Algorithmus, der
weitere Spaltenvektoren vs, ..., v der Matrix V unter dieser Annahme bestimmt.

Greedy-Algorithmus(n x d Matrix A)
1. v1 = argmax,, =1 [|Av1||
2. o1 = ||Avy||
3. while 0; # 0 do
4 1=1+1
5. v =argmax u=1  [|Avi]
vilvy,...v;_q
6 0; = HAUzH
7

. Return vy,...,v;

Man kann zeigen, dass der Algorithmus eine sogenannte Singuldrwertzerlegung der Matrix A
bestimmt. Allgemein besteht die Singuldrwertzerlegung einer reellen Matrix A aus drei Matrizen

U,D,V, mit

A=U-D-V"
und mit den folgenden Eigenschaften der Matrizen
- U ist eine n x r Matrix mit orthonormalen Spaltenvektoren u, ..., u,,
- V ist eine d x r Matrix mit orthonormalen Spaltenvektoren vy, ..., v,,

- D ist eine r x r Diagonalmatrix mit Eintrdgen ¢y > --- > 0, > 0,
wobei r den Rang der Matrix A bezeichnet, das heifit r ist die maximale Anzahl linear un-
abhéngiger Zeilenvektoren von A.

Wir nennen die Spaltenvektoren von V' die rechten Singuldirvektoren, die Spaltenvektoren
von U die linken Singuldrvektoren und die Werte o1, ..., 0, die Singuldrwerte. Wir konnen die
obige Gleichung schreiben als

.
A= Z JiuiUZ-T 5
i=1

Betrachten wir nur die Summe der ersten k Terme, dann erhalten wir eine Matrix

k
Ak: E O‘iuiUZ-T
=1

Die Zeilenvektoren von A entsprechen den Vektoren g; in dem von V' aufgespannten k-
dimensionalen Unterraum, welche unsere Datenpunkte a; approximieren sollen. Dadurch, dass
die Singuldrwerte ihrer Grofle nach geordnet sind, wihlen wir mit Ay genau die Terme aus, die
am stérksten in die Summe eingehen.

Alternativ kénnen die Vektoren v1,. .., v durch eine Eigendekomposition der Matrix AT A
bestimmt werden. Dort wiirden wir die k£ Eigenvektoren mit den grofiten Eigenwerten auswéihlen.

Die Darstellung der Datenpunkte im Unterraum der ersten k Eigenvektoren, bzw. Singulérvektoren,

wird auch als Eigenkomponentenanalyse bezeichnet.

4 Potenzmethode

Wie kann man nun den Singulérvektor arg max, =1 [|Avi|| bestimmen? Dafiir betrachten wir
die sogenannte Potenzmethode. Die Methode hat ihren Namen daher, dass sie das Ergebnis
bestimmt indem sie eine Matrix immer wieder mit sich selbst multipliziert, um eine hohe Potenz
dieser Matrix zu berechnen.
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Betrachte die Matrix B = AT - A. Sei A = Y_!_, oyu;v] die Singulérwertzerlegung, wie oben
definiert. Dann ist . .
AT = Z oi(ul)T = Z oviul .
i=1 i=1
Also erhalten wir fiir B
T T
B = (Z awm?) Z Ujujva
i—1 j=1

r

= > aioj(viu] ) (uv])

i=1 j=1
T T T
2. (T, N, T T T
= g oivi(uj ui)v; + E E 0300 (u; uj)v;
i=1 i=1 j=1
i
Da die Vektoren uj,...,u, orthonormal sind, gilt uZTul =1fiir 1 <+¢und UZTUJ‘ = 0 fiir ¢ # j.

Daher folgt
T
B = Z afviv?
=1

Betrachte nun die Matrix B2 = B - B.

T 7
2 _ 2, T 2, T
B* = <E Jivzvi> g oj;V;
i—1 j=1
T

= > aioj(viv] ) (vv])

i=1 j=1

T T T
= Z o2 (vl vl + Z Z Uiajvi(viij)v;r
i=1

i=1 j=1
i

Da die Vektoren vy, ..., v, orthonormal sind, gilt v]v; = 1 fiir 1 < 4 und UiTUj = 0 fiir ¢ # j.

Daher erhalten wir
T
2 _ 4. T
B® = g 0; V;iv;
i=1

Allgemein konnen wir damit fiir die kte Potenz von B herleiten, dass

T
k _ 2%, T
BY = E 0" v;
i=1

da der Term (v}v;) immer gleich 1 ist und bei der Multiplikation stets wegfillt. Wenn o1 > o9,

dann konvergiert B* fiir groBe Werte von k gegen den ersten Term der Summe,

k 2k, T
BY — o7"v1vy

Das heifit, wir kénnen v; bestimmen, indem wir einen Spaltenvektor von B¥ normieren.
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