
AGML, Sommersemester 2020 Vorlesung 1 (4 Seiten)

PAC Learning

Thomas Kesselheim Letzte Aktualisierung: 22. April 2020

Zum Einstieg betrachten wir binäre Klassifikation. Das heißt, wir müssen Datenpunkte klas-
sifizieren nach

”
positiv“ oder

”
negativ“. Einige korrekt klassifizierte Punkte sind uns gegeben.

Es könnte sich also beispielsweise um E-Mails handeln, bei denen wir automatisch
”
Spam“ und

”
Nicht-Spam“ unterscheiden wollen. Diese Beschriftung ist ein Label.

1 Schwellenwertfunktionen

Unser erstes Beispiel nimmt stark vereinfachend an, dass jeder Datenpunkt nur ein einziges
Merkmal x ∈ X := R hat, das eine reelle Zahl ist. Die jeweilige Ausprägung des Merkmals
charakterisiert einen Datenpunkt perfekt: Wann immer x ≥ a ist, handelt es sich um einen
positiv zu klassifizierenden Punkt, ansonsten um einen, der negativ zu klassifizieren ist.

Das heißt, wir können eine Funktion f : X → {−1,+1} angeben, die die korrekten Labels
beschreibt. Sie lautet

f(x) =

{
+1 falls x ≥ a
−1 sonst

[

a

Diese Funktion nennen wir Grundwahrheit (ground truth).
Obwohl die Struktur der korrekten Labels sehr einfach ist, ist die Aufgabe nicht trivial. Wir

kennen nämlich a nicht. Uns werden lediglich m Datenpunkte mit korrekten Labels gegeben. Die
zentrale Frage ist: Wie groß muss m sein, damit wir neue Datenpunkte einigermaßen zuverlässig
klassifizieren können?

Ein Beispiel mit m = 7 könnte also so aussehen:

a

2 Hypothesen und Fehler

Konkreter nehmen wir an, dass die Datenpunkte x aus irgendeiner Wahrscheinlichkeitsverteilung
D gezogen werden. Unseren Hypothesenraum bezeichnen wir mit H. In diesem Fall ist H die
Menge aller Funktionen der Form ha′ : R→ {−1,+1} mit

ha′(x) =

{
+1 falls x ≥ a′
−1 sonst



AGML, Sommersemester 2020 Vorlesung 1 (Seite 2 von 4)

Unser Ziel ist es, eine Hypothese h mit möglichst kleinem Fehler errD,f (h) zu finden. Dieser ist
wie folgt definiert.

Definition 1.1. Der tatsächliche Fehler (oder tatsächliches Risiko) errD,f (h) einer Hypothese
h hinsichtlich einer Wahrscheinlichkeitsverteilung D über Datenpunkte und Grundwahrheit f
ist

errD,f (h) := Prx∼D [h(x) 6= f(x)] .

Beispiel 1.2. Sei D die uniforme Verteilung auf [0, 1]. Der tatsächliche Fehler einer Hypothese
ha′ ist errD,f (ha′) = |a− a′|, wenn a, a′,∈ [0, 1]. Da a jedoch im Allgemeinen nicht bekannt ist,
kann dieser jedoch von einem Lernalgorithmus nicht berechnet werden.

In diesem Beispiel und auch im Folgenden vereinfachen wir uns das Leben durch die Annah-
me, dass die Grundwahrheit realisierbar ist. Das heißt, dass f ∈ H. Dies ist in unserem Beispiel
natürlich erfüllt. In der Realität hingegen sind die Hypothesenklassen meist nicht mächtig genug,
um alle Datenpunkt richtig zu klassifizieren.

3 Lernen mit Samples

Wie finden wir also eine Hypothese h, die den tatsächlichen Fehler errD,f (h) möglichst klein
hält? Wir nehmen an, dass uns m Datenpunkte mit korrekten Labels gegeben sind. Seien also
x1, . . . , xm Datenpunkten, die unabhängig und identisch verteilt aus D gezogen sind. Außerdem
seien y1 = f(x1), . . . , ym = f(xm) die zugehörigen korrekten Labels. Die Menge aller Samples
bezeichnen wir mit S = {(x1, y1), . . . , (xm, ym)}.

Ein einfacher Lernalgorithmus wählt nun das größte a′, sodass ha′ die Menge S korrekt
klassifiziert. Das heißt, wir setzen a′ auf den Wert des kleinsten xi mit yi = 1, wenn es ein
solches gibt. Anderenfalls a′ =∞.

In unserem Beispiel sieht das so aus:

a a′

Satz 1.3. Sei ha′ die vom einfachen Lernalgorithmus berechnete Hypothese, der als Eingabe ein
Sample von m Datenpunkten mit korrekten Labels gemäß f erhält, die unabhängig und identisch
verteilt aus D gezogen werden. Dann gilt für alle ε > 0, dass Pr [errD,f (ha′) ≥ ε] ≤ e−εm .

Beweis. Weil unser Lernalgorithmus das größte a′ wählt, wird auf jeden Fall gelten, dass a′ ≥ a.
Falsch klassifiziert werden alle Punkte im Bereich [a, a′). Somit gilt nun für jede Verteilung D

errD,f (ha′) = Prx∼D
[
x ∈ [a, a′)

]
.

Sei nun a′′ die kleinste Zahl, sodass Prx∼D [x ∈ [a, a′′]] ≥ ε. Der Fehler von ha′ wird also
höchstens ε sein, falls a′ ≤ a′′. Dies geschieht, wenn es mindestens ein i gibt, sodass xi ∈ [a, a′′].
Sei Ei das Ereignis, dass xi ∈ [a, a′′]. Es gilt Pr [Ei] ≥ ε. (Für den Fall einer stetigen Verteilung
gilt hier Gleichheit.)
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t

Prx∼D [x ≤ t]

a a′′

ε

Damit nicht a′ ≤ a′′ gilt, darf keines der Ereignisse Ei eintreten. Wir interessieren uns also
für

⋂
i Ēi. Weil x1, . . . , xm unabhängige Züge aus D sind, gilt nun auch

Pr

[⋂

i

Ēi
]

=
∏

i

Pr
[
Ēi
]
≤ (1− ε)m .

Wir können nun die Abschätzung 1 − x ≤ e−x für alle x ∈ R verwenden. Somit erhalten wir
insgesamt die Behauptung.

Satz 1.3 sagt uns nun insbesondere, dass wenn wir m = 1
ε ln

(
1
δ

)
wählen, die Wahrschein-

lichkeit, dass der tatsächliche Fehler unserer gefundenen Hypothese größer als ε ist, kleiner als
δ wird.

4 PAC-Lernbarkeit

Diese Aussage gilt für alle ε > 0 und alle δ > 0. Wenn die Anzahl der Samples also nur groß
genug ist, werden wir mit großer Wahrscheinlichkeit nur einen sehr kleinen Fehler haben. Die
Hypothesenklassen, für die dies gilt, heißen PAC-lernbar.

Definition 1.4. Eine Hypothesenklasse H heißt PAC-lernbar (im realisierbaren Sinn), wenn es
eine Funktion mH und einen Lernalgorithmus A gibt, sodass der Algorithmus für alle ε, δ > 0,
jede Verteilung D und alle f ∈ H, gegeben ein Sample S von Größe mindestens mH(ε, δ) von Da-
tenpunkten mit korrekten Labels, eine Hypothese hS ∈ H berechnet, sodass Pr [errD,f (hS) < ε] ≥
1− δ.

Ferner heißt sie effizient PAC-lernbar, wenn es einen Polynomialzeitalgorithmus A mit obi-
ger Eigenschaft gibt.

PAC steht für
”
probably approximately correct“.

”
Probably“ bedeutet in diesem Fall, dass

die Wahrscheinlichkeit mindestens 1 − δ ist,
”
approximately correct“ bezieht sich darauf, dass

errD,f (hS) < ε.
Nicht jede Hypothesenklasse ist PAC-lernbar. Zum Beispiel ist die Klasse aller Hypothesen

N→ {−1,+1} nicht PAC-lernbar. Dies werden wir im Laufe der Vorlesung beweisen.

5 Weiteres Beispiel: Lernen von Intervallen

Nun betrachten wir als Hypothesenklasse H die Menge aller Funktionen der Form ha′,b′ : R →
{−1,+1} mit

ha′,b′(x) =

{
+1 falls x ∈ [a′, b′]

−1 sonst
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Wir sind wieder im realisierbaren Fall. Das heißt, es gibt eine Grundwahrheit f ∈ H, die
alle Datenpunkte richtig klassifiziert. Nun also

f(x) =

{
+1 falls x ∈ [a, b]

−1 sonst

Gegeben ist wieder eine Menge S = {(x1, y1), . . . , (xm, ym)} von Datenpunkten mit korrekten
Labels. Unser Lernalgorithmus wählt das kleinste Intervall [a′, b′], das S korrekt klassifiziert.
Das heißt, wir setzen a′ auf den Wert des kleinsten xi mit yi = 1 und b′ auf den Wert des
größten xi mit yi = 1. Den Fall, dass es kein i mit yi = 1 gibt, ignorieren wir.

Satz 1.5. Für alle ε > 0 gilt Pr
[
errD,f (ha′,b′) ≥ ε

]
≤ 2e−

εm
2 .

Beweis. Weil unser Lernalgorithmus das kleinste Intervall wählt, wird auf jeden Fall gelten,
dass a′ ≥ a und b′ ≤ b. Falsch klassifiziert werden alle Punkte im Bereich [a, a′) ∪ (b′, b]. Somit
gilt nun für jede Verteilung D

errD,f (ha′,b′) = Prx∼D
[
x ∈ [a, a′) ∪ (b′, b]

]
.

Sei außerdem ähnlich wie oben a′′ die kleinste Zahl, sodass Prx∼D [x ∈ [a, a′′]] ≥ ε
2 . Analog

sei b′′ die größte Zahl, sodass Prx∼D [x ∈ [b′′, b]] ≥ ε
2 . Damit errD,f (ha′,b′) ≤ ε ist es nun hin-

reichend, dass a′ ≤ a′′ und b′ ≥ b′′. Dies geschieht, wenn es je mindestens ein i gibt, sodass
xi ∈ [a, a′′] bzw. xi ∈ [b′′, b].

Für jedes i gilt

Pr
[
xi ∈ [a, a′′]

]
≥ ε

2
und Pr

[
xi ∈ [b′′, b]

]
≥ ε

2
.

Weil x1, . . . , xm unabhängige Züge aus D sind, gilt nun auch

Pr
[
x1, . . . , xm 6∈ [a, a′′]

]
≤
(

1− ε

2

)m
und Pr

[
x1, . . . , xm 6∈ [b′′, b]

]
≤
(

1− ε

2

)m
.

Damit gilt auch

Pr
[
x1, . . . , xm 6∈ [a, a′′] oder x1, . . . , xm 6∈ [b′′, b]

]
≤ 2

(
1− ε

2

)m
,

wobei wir die Abschätzung Pr [E ∪ F ] ≤ Pr [E ]+Pr [F ] für zwei Ereignisse E und F verwendet
haben.

Die Behauptung folgt nun wieder mit der Abschätzung 1− x ≤ e−x für alle x ∈ R.

Referenzen

• Foundations of Machine Learning, Kapitel 2.1

• Siehe auch die Vorlesungsskripte von Anna Karlin https://courses.cs.washington.

edu/courses/cse522/17sp/ und Avrim Blum http://www.cs.cmu.edu/~avrim/ML14/.
Diese enthalten weitere Referenzen.
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Wachstumsfunktion

Thomas Kesselheim Letzte Aktualisierung: 24. April 2020

1 Wiederholung: PAC-lernbar (Realisierbarer Fall)

Unsere Aufgabe ist es, Datenpunkte aus einer Menge X zu klassifizieren, beispielsweise X ⊆ R.
Die Label werden binär sein, das heißt -1 oder 1. Beispielsweise könnte X die Menge aller E-
Mails sein und die Labels habe die Bedeutung

”
nicht Spam“ oder

”
Spam“. Unser Ziel ist es,

dass wir für jeden Datenpunkt x, den wir als Eingabe erhalten, das korrekte Label y ∈ {−1, 1}
vorhersagen zu können.

Es gibt eine Klasse von Hypothesen H. Jede hat die Form h : X → {−1, 1}. Wir nehmen
an, dass wir im realisierbaren Fall sind. Das heißt, es gibt eine Grundwahrheit f ∈ H, die
eine unserer möglichen Hypothesen ist, und das korrekte Label für x ∈ X ist immer f(x). Wir
möchte nun eine Funktion h ∈ H finden, die möglichst ähnlich zum korrekten f ist. Dafür steht
uns aber nur eine begrenzte Anzahl Samples mit korrekten Labels zur Verfügung.

Wir erinnern uns an die Definition von PAC-Lernbarkeit.

Definition 2.1. Eine Hypothesenklasse H heißt PAC-lernbar (im realisierbaren Sinn), wenn es
eine Funktion mH und einen Lernalgorithmus A gibt, sodass der Algorithmus für alle ε, δ > 0,
jede Verteilung D und alle f ∈ H, gegeben ein Sample S von Größe mindestens mH(ε, δ) von Da-
tenpunkten mit korrekten Labels, eine Hypothese hS ∈ H berechnet, sodass Pr [errD,f (hS) < ε] ≥
1− δ.

Hierbei ist errD,f (h) := Prx∼D [h(x) 6= f(x)] der tatsächliche Fehler von h. Zwei Beispiele
dafür haben wir bereits gesehen. Heute wollen wir uns das Thema etwas allgemeiner anschauen.

2 Minimierung des Trainingsfehlers

Wir werden uns allgemeiner Algorithmen anschauen, die den Trainingsfehler minimieren.

Definition 2.2. Der Trainingsfehler (oder empirisches Risiko) errS(h) einer Hypothese h hin-
sichtlich einer Trainingsmenge S ist

errS(h) :=
1

m
|{h(xi) 6= yi}| .

Im realisierbaren Fall gilt für die Grundwahrheit f immer errS(f) = 0 für alle S. Unsere
Algorithmen aus der letzten Vorlesung berechneten jedoch auch jeweils Hypothesen h, sodass
errS(h) = 0. Auch diese minimieren also den Trainingsfehler. Unsere Frage heute wird sein, den
tatsächlichen Fehler von Hypothesen zu beschränken, die den Trainingsfehler minimieren.

3 Endliche Hypothesenklassen

Wir betrachten zunächst den einfachen Fall, dass die Menge H endlich ist, wenn auch ansonsten
beliebig.

Satz 2.3. Wenn m ≥ 1
ε ln

(
|H|
δ

)
, dann gilt mit Wahrscheinlichkeit mindestens 1− δ, dass alle

h ∈ H mit errS(h) = 0 auch errD,f (h) < ε erfüllen.
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Beweis. Wir betrachten zunächst ein festes h ∈ H mit errD,f (h) ≥ ε, das heißt, der tatsächliche
Fehler von h ist mindestens ε. Nun gilt

Pr [errS(h) = 0] = Pr [h(x1) = y1, . . . , h(xm) = ym]

= Pr [h(x1) = y1] · . . . ·Pr [h(xm) = ym] ≤ (1− ε)m ≤ e−εm .

Das heißt, dass die Wahrscheinlichkeit, dass h keinen Trainingsfehler hat, höchstens e−εm ist.
Um die Gesamtwahrscheinlichkeit zu beschränken, dass es irgendeine Hypothese gibt, die

zwar keinen Trainingsfehler, aber großen tatsächlichen Fehler hat, benutzen wir die sogenannte
Union Bound.

Lemma 2.4 (Union Bound). Es seien E1, . . . , En (nicht notwendigerweise disjunkte) Ereignisse.
Dann gilt

Pr

[
n⋃

i=1

Ei
]
≤

n∑

i=1

Pr [Ei] .

Der Beweis der Union Bound folgt durch induktive Anwendung von Pr [A ∪B] = Pr [A] +
Pr [B]−Pr [A ∩B] ≤ Pr [A] + Pr [B].

Um nun die Union Bound anzuwenden, definieren wir für jede Hypothese h ∈ H das Ereignis
Eh, dass errS(h) = 0.

Nun gilt

Pr [∃h ∈ H : errD,f (h) ≥ ε und errS(h) = 0] = Pr


 ⋃

h∈H,errD,f (h)≥ε
Eh




≤
∑

h∈H,errD,f (h)≥ε
Pr [errS(h) = 0]

≤ |H|e−εm ≤ δ .

4 Wachstumsfunktion

Dieses Ergebnis nützt uns natürlich nichts, wenn H unendlich ist. Wir haben allerdings schon
Beispiele gesehen, dass auch unendliche Hypothesenklassen PAC-lernbar sein können, beispiels-
weise die Schwellenwertfunktionen. Diese haben eine Struktur, die wir ausnutzen können. Dies
können wir wie folgt formalisieren.

Definition 2.5. Gegeben S ⊆ X, sei H|S die Menge aller Hypothesen h ∈ H mit Definitions-
bereich eingeschränkt auf S. Das heißt, H|S = {h|S | h ∈ H}.

Die Wachstumsfunktion von H ist definiert als ΠH(m) = maxS⊆X,|S|=m|H|S |.

Weil die Abbildungen in H|S von S nach {−1,+1} abbilden, können es nicht mehr als 2m

verschiedene sein, weil es nicht mehr Abbildungen gibt. Somit muss immer ΠH(m) ≤ 2m gelten.
Häufig sind die Werte von ΠH jedoch viel kleiner.

Beispiel 2.6. Betrachte X = R und H als die Klasse der Schwellenwertfunktionen

ha′(x) =

{
+1 falls x ≥ a′
−1 sonst
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Für S = {2, 3, 4} besteht H|S aus folgenden vier Funktionen:

x 7→ −1 für alle x x 7→ +1 für alle x

x 7→
{
−1 für x = 2 oder x = 3

+1 für x = 4
x 7→

{
−1 für x = 2

+1 für x = 3 oder x = 4

Es gibt noch vier weitere Funktionen {2, 3, 4} → {−1,+1}. Diese lassen sich aber nicht über
einen Schwellenwert realisieren.

Allgemein gilt ΠH(m) = m+ 1, denn es gibt nur m+ 1 mögliche
”

Umschaltpunkte“ von −1
auf +1. Das heißt, die Funktion wächst deutlich schwächer als 2m.

Der folgende Satz zeigt, dass wir in der Aussage von Satz 2.3 im Wesentlichen die Größe
von H durch die Wachstumsfunktion ersetzen können.

Satz 2.7. Es seien ε > 0 und δ > 0 beliebig und

m ≥ max

{
8

ε
,
2

ε
log2

(
2ΠH(2m)

δ

)}
. (1)

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemäß f gezogen unabhängig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1− δ, dass alle h ∈ H
mit errS(h) = 0 auch errD,f (h) < ε erfüllen.

Bevor wir mit dem Beweis dieses Satzes beginnen, schauen wir uns zunächst die Aussage et-
was genauer an. Sie hat grundsätzlich die Struktur der Aussage, wie wir sie für PAC-Lernbarkeit
brauchen. Wenn m Bedingung (1) erfüllt, dann führt beliebiger Lernalgorithmus, der den Trai-
ningsfehler minimiert, zu einem tatsächlichen Fehler von höchstens ε mit Wahrscheinlichkeit
mindestens 1− δ.

Wann gilt jedoch Bedingung 1 und wann ist sie überhaupt für alle ε und δ erfüllbar? Schauen
wir uns nur noch m ≥ 8

ε an, dann brauchen wir noch

m ≥ 2

ε
log2

(
2ΠH(2m)

δ

)
=

2

ε
log2 (ΠH(2m)) +

2

ε
log2

(
2

δ

)
⇔ m− log2

(
2
δ

)

log2 (ΠH(2m))
≥ 2

ε
.

Wenn ΠH(2m) = 22m (die triviale Schranke), dann ist log2 (ΠH(2m)) = 2m. Die Ungleichung
ist also für sinnvolle ε (d.h. ε < 1) nicht erfüllbar.

Wächst hingegen log2 (ΠH(2m)) schwächer als m, das heißt, log2 (ΠH(2m)) = o(m), dann
muss m nur ausreichend groß genug gewählt werden, um die Schranke zu erfüllen.

Im Beispiel mit den Schwellenwertfunktionen ist dies der Fall. Es gilt ΠH(2m) = 2m + 1.
Nun gilt also für alle δ > 0, dass

m− log2
(
2
δ

)

log2 (ΠH(2m))
=
m− log2

(
2
δ

)

log2(2m+ 1)
→∞ für m→∞ .

Egal, wie ε und δ als gewählt sind, für genügend große m ist Bedingung 1 immer erfüllt.
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Mengensysteme

Anne Driemel Letzte Aktualisierung: 2. Mai 2020

In den letzten Vorlesungen haben wir uns mit PAC-Lernbarkeit unter Annahme fester Hy-
pothesenklassen beschäftigt. Wir haben gesehen, dass die Struktur einer Hypothesenklasse auch
etwas über die Lernbarkeit aussagt, sofern die Hypothesenklasse realisierbar ist. In dieser Vorle-
sung werden wir uns mit der Struktur der Hypothesenklassen aus der Sicht von Mengensystemen
befassen und allgemeine Eigenschaften ableiten. Wir nehmen dabei noch stets die Realisierbar-
keit der Hypothesenklasse an.

1 Mengensysteme

Definition 3.1 (Mengensystem). Sei X eine beliebige Menge und R eine Menge von Teilmen-
gen von X . Wir nennen R ein Mengensystem mit Grundmenge X .

Jede Hypothesenklasse H, definiert durch eine Menge von Funktionen der Form

h : X → {−1,+1},

kann gleichsam durch ein Mengensystem beschrieben werden. Wir definieren für jede Funktion
h ∈ H eine Menge

rh = { x ∈ X | h(x) = 1 } ,
welche also genau der positiven Menge entspricht. Die Menge aller Mengen rh bildet dann das
Mengensystem.

Beispiel 3.2. Die Menge aller achsenparallelen Rechtecke in der Ebene definiert ein Mengen-
system R mit Grundmenge X = R2. Formal ist jedes Element r ∈ R definiert durch ein Tupel
(a, b, c, d) mit

ra,b,c,d = { (x, y) ∈ X | a ≤ x ≤ b, c ≤ y ≤ d } .

Eine wichtige kombinatorische Eigenschaft von Mengensystemen ist ihre VC-dimension, be-
nannt nach Vapnik und Chervonenkis.

Definition 3.3 (Abspalten). Wir sagen eine Menge A′ ⊆ X wird durch ein Mengensystem R
von einer Menge A ⊆ X abgespalten, wenn A′ durch den Schnitt mit einer Menge von R erzeugt
werden kann. Das heißt, es existiert ein r ∈ R mit A′ = r ∩A.

Definition 3.4 (Aufspalten). Eine Menge A ⊆ X wird durch ein Mengensystem aufgespalten,
wenn alle Teilmengen von A abgespalten werden können.

Definition 3.5 (VC-dimension). Die VC-dimension von R ist die Anzahl der Elemente in der
größten durch R aufgespaltenen Menge. Falls keine solche Menge existiert, dann ist die VC-
dimension unendlich. Wir bezeichnen die VC-dimension mit dim(R). Für den Sonderfall R = ∅
definieren wir dim(∅) = 0.

Schauen wir uns die VC-dimension im oben genannten Beispiel genauer an. Die VC-dimension
von R ist mindestens 4, da wir eine 4-elementige Menge A von Punkten in der Ebene angeben
können, die von R aufgespalten wird. Abbildung 1 zeigt eine solche Menge. Gleichzeitig können
wir zeigen, dass für jede 5-elementige Menge A′ gilt, dass sie nicht durch R aufgespalten wird.
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a
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Abbildung 1: (links) Beispielmenge die durch das Mengensystem der achsenparallelen Rechte-
cke aufgespalten wird. Exemplarisch dargestellt sind auch drei achsenparallele Rechtecke, die
verschiedene Teilmengen abspalten. (rechts) Bei fünf Punkten können wir immer einen Punkt q
finden, sodass das Komplement nicht durch ein achsenparalleles Rechteck abgespalten werden
kann.

a

b

c

d

ef

g

h

i

Abbildung 2: Beispielmenge von Punkten die durch das Mengensystem aller konvexer Poly-
gone aufgespalten wird. Exemplarisch dargestellt ein Polygon, das die Teilmenge {a, b, d, f, h}
abspaltet.

Angenommen alle Koordinaten der Punkte in A sind paarweise verschieden. Da die Menge 5
Punkte enthält, existiert ein Punkt q ∈ A, der weder die x-Koordinate, noch die y-Koordinate
in A minimiert oder maximiert. Es folgt, dass q in allen achsenparallelen Rechtecken enthalten
ist, welche die Menge A \ {q} enthalten. Daher existiert keine Menge r ∈ R, sodass

A \ {q} = A ∩ r.

Damit ist die VC-dimension des Mengensystems der achsenparallelen Rechtecke genau 4.
Es gibt auch Mengensysteme mit unendlicher VC-dimension. Betrachten wir das Mengensys-

tem aller konvexen Polygone in der Ebene. Konvexe Polygone sind dadurch definiert, dass jeder
Innenwinkel höchstens 180◦ beträgt. Für jede natürliche Zahl n können wir eine n-elementige
Menge finden, welche durch dieses Mengensystem aufgespalten wird. Sei An eine Menge von
n Punkten auf dem Einheitskreis. Jede Teilmenge A ⊆ An definiert als Menge von Ecken ein
konvexes Polygon P mit der gewünschten Eigenschaft, siehe Abbildung 2. Somit ist die VC-
dimension des Mengensystems der konvexen Polygone unendlich.
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2 Wachstum von endlichen Mengensystemen

Ein Mengensystem ist endlich, wenn es nur endlich viele Mengen enthält. Wieviele Mengen kann

ein Mengensystem mit
∣∣X
∣∣ = m enthalten? Allgemein gilt

∣∣R
∣∣ ≤ 2

∣∣X
∣∣

= 2m. Was, wenn die
VC-dimension kleiner als m ist?

Beispiel 3.6. Sei X = {1, 2, . . . ,m} und sei R das Mengensystem, das alle Teilmengen von
maximaler Größe k enthält. Die VC-dimension dieses Mengensystems ist k. Wir können alle
generierten Mengen aufzählen und sehen direkt, dass

∣∣R
∣∣ =

k∑

i=0

(m
i

)
≤

k∑

i=0

mk ≤ (k + 1)mk.

Für ein festes k wächst die Anzahl der Mengen im Beispiel höchstens polynomiell in der Größe
des Mengensystems m.

Wir wollen nun eine asymptotische obere Schranke zeigen, die dieses Wachstum im allgemei-
neren Fall von endlichen Mengensystemen mit endlicher VC-dimension beschreibt. Das folgende
Lemma zeigt, dass die VC-dimension das Wachstum in diesem Sinne charakterisiert.

Lemma 3.7. Es gilt für jedes Mengensystem R mit m-elementiger Grundmenge X und VC-
dimension d, dass

∣∣R
∣∣ ≤

d∑

i=0

(m
i

)
.

Beweis. Wir zeigen den Satz durch Induktion über m mit Induktionsanfang m = 0. In diesem
Fall kann R höchstens die leere Menge enthalten, also ist

∣∣R
∣∣ ≤ 1 und d ≤ 0. Gleichzeitig gilt

per Definition des Binomialkoeffizienten, dass
(
0
0

)
= 1. Damit ist die Aussage für den Indukti-

onsanfang erfüllt. Im Induktionsschritt nehmen wir an, dass m > 0. Sei R ein Mengensystem
mit Grundmenge X und VC-dimension d. Nehmen wir an, dass d = 0. In diesem Fall kann man
auch zeigen, dass

∣∣R
∣∣ ≤ 1 und die Aussage ist erfüllt. Also nehmen wir an, dass d > 0.

Sei x ∈ X fest und betrachte das Mengensystem

R1 = { r \ {x} | r ∈ R } .

Sei die VC-dimension d1. Beachte, dass d1 ≤ d ist, da jede Menge A ⊆ X \ {x} die durch
R1 aufgespalten wird, auch durch R aufgespalten wird.

Nun folgt aus der Induktionsannahme, dass

∣∣R1

∣∣ ≤
d1∑

i=0

(
m− 1

i

)
≤

d∑

i=0

(
m− 1

i

)
.

Allerdings könnte es sein, dass zwei verschiedene Mengen in R durch die Beschränkung auf
X \ {x} identisch werden und dadurch

∣∣R1

∣∣ strikt kleiner ist als
∣∣R
∣∣. Wir definieren ein zweites

Mengensystem um genau diese Paare von Mengen zu zählen, wie folgt

R2 = { r \ {x} | r \ {x} ∈ R und r ∪ {x} ∈ R } .

Es folgt nun, dass ∣∣R
∣∣ =

∣∣R1

∣∣+
∣∣R2

∣∣.



AGML, Sommersemester 2020 Vorlesung 3 (Seite 4 von 6)

Sei d2 = dim(R2). Wir behaupten, dass d2 ≤ d−1. Angenommen, dem wäre nicht so und die
VC-dimension wäre mindestens d. Dann existierte eine Menge A ⊆ X \ {x} mit |A| = d, sodass
A durch R2 aufgespalten wird. Dann würde auch die Menge A ∪ {x} durch R aufgespalten,
denn R2 enthält ja nur solche Paare von Mengen aus R, die bis auf x identisch sind. Das würde
aber der Grundannahme widersprechen, dass die VC-dimension von R gleich d ist.

Somit gilt nach Induktionsannahme, dass

|R2| ≤
d2∑

i=0

(
m− 1

i

)
≤

d−1∑

i=0

(
m− 1

i

)
=

d∑

j=1

(
m− 1

j − 1

)

Durch Einsetzen in die obige Gleichung bekommen wir

∣∣R
∣∣ ≤

d∑

i=0

(
m− 1

i

)
+

d∑

j=1

(
m− 1

j − 1

)
= 1 +

d∑

i=1

(
m− 1

i

)
+

(
m− 1

i− 1

)
=

d∑

i=0

(m
i

)
,

wobei die letzte Gleichung aus der rekursiven Darstellung des Binomialkoeffizienten folgt.

3 Unendliche Mengensysteme

Wir wollen nun die obige Schranke erweiteren auf unendliche Mengensysteme. Also Mengensys-
teme, die unendlich viele Mengen enthalten. Insbesondere sind wir interessiert am Wachstum
der Anzahl der durch das Mengensystem abgespaltenen Teilmengen. Um das zu formalisieren
betrachten wir Untersysteme, die wir wie folgt definieren.

Definition 3.8 (Untersystem). Sei R ein Mengensystem mit Grundmenge X . Jede Menge
A ⊆ X bestimmt ein Untersystem von R wie folgt

R|A = { r ∩A | r ∈ R } .

Das heißt, R|A ist ein Mengensystem mit Grundmenge A, welches genau die Teilmengen von
A enthält, die von A durch R abgespalten werden können. Die VC-dimension kann durch die
Beschränkung auf ein Untersystem nicht größer werden, also gilt dim(R|A) ≤ dim(R).

Beispiel 3.9. Wir haben Untersysteme schon kennengelernt, auch wenn wir sie nicht so ge-
nannt haben. Insbesondere ist das Mengensystem R1 aus vorhergehendem Beweis das Untersys-
tem von R beschränkt auf X \ {x}, denn,

R1 = { r \ {x} | r ∈ R } = { r ∩ (X \ {x}) | r ∈ R } = R|X\{x}.

Satz 3.10 (Wachstumslemma). Sei R ein Mengensystem mit Grundmenge X und VC-dimension
d. Für jede natürliche Zahl m gilt, dass

ΠR(m) = max
A⊆X
|A|=m

∣∣R|A
∣∣ ≤

(em

d

)d
.

Wir nennen ΠR die Wachstumsfunktion von R.

Beweis. Da die VC-dimension durch die Beschränkung auf ein Untersystem nicht größer werden
kann, können wir Lemma 3.7 direkt anwenden und bekommen für jede Menge A′ ⊆ X mit∣∣A′
∣∣ = m, dass

∣∣R|A′
∣∣ ≤

d∑

i=0

(m
i

)
.
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Nun machen wir folgende Abschätzung

(
m

i

)
=

m!

(m− i)! · i! ≤
mi

i!
=
(m

d

)i di

i!
≤
(m

d

)d di

i!
.

Zusammen mit der Reihendefinition der Exponentialfunktion ex =
∑∞

i=0
xi

i! , bekommen wir
dann

d∑

i=0

(
m

i

)
≤

d∑

i=0

(m
d

)d di

i!
=
(m

d

)d d∑

i=0

di

i!
≤
(m

d

)d
ed .

Da wir die Schranke für jede m-elementige Menge A′ zeigen, gilt sie auch für die größte
solche Menge. Damit ist der Satz bewiesen.

4 PAC-Lernbarkeit

Unsere Motivation um Mengensysteme zu studieren war zu Beginn mit der Hoffnung auf bessere
Schranken für die PAC-Lernbarkeit von Hypothesenklassen begründet. Sei H eine Hypothesen-
klasse und sei R das entsprechende Mengensystem mit Grundmenge X . Sei S ⊆ X . Schauen
wir uns die Definitionen von R|S und H|S genauer an, sehen wir, dass diese äquivalent im
Sinne unserer Abbildung zwischen Hypothesenklassen und Mengensystemen sind. Insbesondere
beschreibt die Funktionsmenge H|S alle verschiedenen Wege, Labels in {−1,+1} für die Menge
S zu vergeben mithilfe einer Funktion in H. Im Kontext von Mengensystemen entspricht R|S
alle verschiedenen Wege, mithilfe einer Menge r ∈ R eine Teilmenge von S abzuspalten. Diese
Teilmengen entsprechen dann den positiven Teilmengen von S, die sich aus Funktionen in H
ergeben. Somit gilt für die Wachstumsfunktion

ΠH(m) = max
S⊆X,|S|=m

∣∣H|S
∣∣ = max

S⊆X,|S|=m

∣∣R|S
∣∣ = ΠR(m) (1)

Satz 3.11. Sei H eine Hypothesenklasse mit VC-dimension d. Seien 1 ≥ ε > 0 und δ > 0
beliebig und sei

m ≥ max

(
4

ε
log2

2

δ
,
8d

ε
log2

16

ε

)
(2)

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemäß f gezogen unabhängig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1− δ, dass alle h ∈ H
mit errS(h) = 0 auch errD,f (h) < ε erfüllen.

Beweis. Wir wollen Satz 2.7 aus der letzten Vorlesung anwenden, der besagt, dass die obige
Behauptung gilt, sofern die folgende Bedingung für m erfüllt ist.

m ≥ max

{
8

ε
,
2

ε
log2

(
2ΠH(2m)

δ

)}
. (3)

Dafür müssen wir nur zeigen, dass unsere Bedingung (2) die Bedingung (3) impliziert.
Zunächst haben wir, da d ≥ 1 und ε ≤ 1,

m ≥ 8d

ε
log2

16

ε
=⇒ m ≥ 8

ε

womit der erste Teil von Bedingung (3) gezeigt ist.
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Wir behaupten nun, dass aus Bedingung (2) auch folgt, dass

m ≥ 2

ε
log2

(
2

δ
·
(

2em

d

)d
)
. (4)

Aus der Gleichheit der Wachstumsfunktionen von Hypothesenklassen und den zugehörigen
Mengensystemen in (1) und der Schranke aus dem Wachstumslemma (Satz 3.10) folgt

(
2em

d

)d

≥ ΠH(2m)

und somit wäre

m ≥ 2

ε
log2

(
2ΠH(2m)

δ

)

Damit wäre auch der zweite Teil der Bedingung 3 gezeigt.
Es bleibt, die Behauptung (2) =⇒ (4) zu zeigen. Dafür formen wir (4) zunächst wie folgt

um.

m ≥ 2

ε
log2

2

δ
+

2

ε
log2

((
2em

d

)d
)
. (5)

Zunächst haben wir für die Abschätzung des ersten Terms

m ≥ 4

ε
log2

2

δ
=⇒ m

2
≥ 2

ε
log2

2

δ
(6)

Für die Abschätzung des zweiten Terms zeigen wir

m

2
≥ 2

ε
d log2

(
2em

d

)
(7)

Setzen wir zunächst m = 8d
ε log2

16
ε auf beiden Seiten ein, sehen wir durch äquivalente

Umformung, dass die Ungleichung für 0 < ε ≤ 1 erfüllt ist. Das gilt auch für größere Werte von
m. Die Behauptung in (5) folgt nun durch das Addieren der beiden Ungleichungen in (6) und
(7).

Referenzen

• Foundations of Machine Learning, Kapitel 3.3

• Understanding Machine Learning, Kapitel 6.2-6.5 (anderer Beweis!)

• Sariel Har-Peled, Geometric Approximation Algorithms. AMS Mathematical Surveys and
Monographs, Band 173. 2011.
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Wachstumsfunktion und Agnostisches PAC-Lernen

Thomas Kesselheim Letzte Aktualisierung: 5. Mai 2020

1 Erinnerung: Wachstumsfunktion

Wir erinnern uns, dass eine Hypothesenklasse H eine Menge von Funktionen der Form h : X →
{−1,+1} ist. Wir haben schon viele Beispiele gesehen, vor allem mit X = R. Diese Hypothesen-
klassen enthalten jedoch nicht alle Funktionen sondern besitzen deutlich mehr Struktur. Dies
wird formalisiert in der Wachstumsfunktion.

Definition 4.1. Gegeben S ⊆ X, sei H|S die Menge aller Hypothesen h ∈ H mit Definitions-
bereich eingeschränkt auf S. Das heißt, H|S = {h|S | h ∈ H}.

Die Wachstumsfunktion von H ist definiert als ΠH(m) = maxS⊆X,|S|=m|H|S |.

In der letzten Vorlesung haben wir ein extrem hilfreiches Werkzeug gesehen, um die Wachs-
tumsfunktion zu beschränken: die VC-Dimension. Wir haben bewiesen, dass wenn die VC-

Dimension d ist, auch ΠH(m) ≤
(
em
d

)d
gilt. Das heißt, wenn die VC-Dimension endlich ist,

wächst die Wachstumsfunktion nur polynomiell.

2 Subexponentielles Wachstum impliziert PAC-Lernbarkeit

Es steht noch der Beweis des Satzes aus der zweiten Vorlesung aus, dass derartiges subexpo-
nentielles Wachstum tatsächlich PAC-Lernbarkeit impliziert. Wir betrachten wieder eine Hypo-
thesenklasse H, eine Grundwahrheit f ∈ H und eine beliebige Wahrscheinlichkeitsverteilung D
über X.

Satz 4.2. Es seien ε > 0 und δ > 0 beliebig und

m ≥ max

{
8

ε
,
2

ε
log2

(
2ΠH(2m)

δ

)}
. (1)

Betrachte ein Sample S von m Datenpunkten mit korrekten Labels gemäß f gezogen unabhängig
und identisch verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1− δ, dass alle h ∈ H
mit errS(h) = 0 auch errD,f (h) < ε erfüllen.

Um Satz 4.2 zu zeigen, beweisen wir zunächst zwei Lemmata, die für sich genommen schon
interessante Aussagen sind. Erst im Anschluss werden wir sie zum Beweis des Satzes zusam-
menfügen.

Wir halten zunächst fest, dass es eigentlich gar nicht mal sehr wahrscheinlich ist, dass eine
feste Hypothese mit großem tatsächlichen Fehler auch

”
typischerweise“ einen großen Trainings-

fehler hat.

Lemma 4.3. Sei h eine Hypothese mit errD,f (h) ≥ ε und sei S′ eine Menge von m zufällig
gezogenen Samples. Falls m Bedingung (1) erfüllt, dann gilt Pr

[
errS′(h) ≥ ε

2

]
≥ 1

2 .

Beweis. Wir können uns das Zufallsexperiment vorstellen als m unabhängige Münzwürfe, wobei
die Wahrscheinlichkeit für Kopf p := errD,f (h) ≥ ε in jedem Wurf beträgt. Wir behaupten, dass
wir mit Wahrscheinlichkeit mindestens 1

2 mindestens ε
2m mal Kopf sehen.



AGML, Sommersemester 2020 Vorlesung 4 (Seite 2 von 5)

Sei dazu Z die Anzahl Kopf in den Münzwürfen. Es gelten E [Z] = pm und Var[Z] =
p(1− p)m. Wegen p ≥ ε gilt also nach der Tschebyschew-Ungleichung

Pr
[
Z ≤ ε

2
m
]
≤ Pr

[
Z ≤ p

2
m
]
≤ Pr

[
|Z −E [Z]| ≥ p

2
m
]
≤ Var[Z]
(p
2m
)2 ≤

p(1− p)m
(p
2m
)2 =

4(1− p)
pm

≤ 1

2
,

wobei wir im letzten Schritt m ≥ 8
ε und deshalb pm ≥ εm ≥ 8 benutzen.

Die nächste Aussage ist, dass es, wenn zwei Sample-Mengen gezogen werden, eher unwahr-
scheinlich ist, dass es eine Hypothese gibt, die auf der einen Menge einen großen und auf der
anderen Menge keinen Trainingsfehler hat.

Lemma 4.4. Seien S und S′ Mengen von m zufällig gezogenen Samples. Falls m Bedingung
(1) erfüllt, dann gilt

Pr
[
∃h′ ∈ H : errS′(h′) ≥ ε

2
und errS(h′) = 0

]
≤ δ

2
.

Beweis. Wir beschreiben einen anderen aber äquivalenten Weg, um S und S′ zu bestimmen:
Wir ziehen 2m mal aus der Verteilung D; sei das Ergebnis T . Jetzt ziehen wir m mal ohne
Zurücklegen aus T und nennen das Ergebnis S. Schließlich ist S′ der Rest aus T also S′ = T \S.

Betrachte nun eine feste Menge T und festes h′ ∈ H. Sei h′(x) 6= f(x) für genau k Elemente
aus T . Die einzige Art und Weise, wie errS′(h′) ≥ ε

2 eintreten kann, ist dass k ≥ ε
2m.

Darüber hinaus ist die Wahrscheinlichkeit, dass h′ keinen Fehler auf S macht gegeben als

Pr
[
errS(h′) = 0

∣∣ T
]

=
2m− k

2m
· 2m− k − 1

2m− 1
· . . . · m− k + 1

m+ 1

=
m(m− 1) . . . (m− k + 1)

(2m)(2m− 1) . . . (2m− k + 1)
≤ 2−k .

Hierbei gilt die zweite Gleichung, weil sich die alle Faktoren aus dem Zähler und dem Nenner
kürzen bis auf die ersten k im Nenner und die letzten k im Zähler.

Das bedeutet, dass für festes h′ und festes T

Pr
[
errS(h′) = 0 und errS′(h′) ≥ ε

2

∣∣∣ T
]
≤
{

0 falls k < ε
2m

2−k sonst

}
≤ 2−

ε
2
m .

An dieser Stelle kommt die Wachstumsfunktion ins Spiel: die Menge T hat nur Größe 2m.
Das bedeutet, weil nur die Funktionswerte von h′ auf T wichtig sind, dass es effektiv höchstens
ΠH(2m) unterschiedliche Wahlen für h gibt. Deshalb gibt uns die Union Bound jetzt

Pr
[
∃h′ ∈ H : errS(h′) = 0 und errS′(h′) ≥ ε

2

∣∣∣ T
]
≤ ΠH(2m)2−

ε
2
m ≤ δ

2
.

Diese Schranke gilt für alle bedingten Wahrscheinlichkeiten, egal welche Menge T wir nutzen.
Also gilt sie auch für die unbedingte Wahrscheinlichkeit.

Beweis von Satz 4.2. Wir werden nun die Lemmata zusammenfügen. Sei A das Ereignis, dass
es ein h ∈ H gibt mit errD(h) ≥ ε aber errS(h) = 0. Wir möchten zeigen, dass Pr [A] ≤ δ.

Um Lemma 4.4 anzuwenden, führen wir ein Hilfsereignis B ein. Sei dafür S′ eine andere
Menge von m Datenpunkten mit zugehörigen Labels, die auch unabhängig aus D gezogen sind.
Sei B das Ereignis, dass es ein h′ ∈ H gibt mit errS′(h′) ≥ ε

2 aber errS(h′) = 0. Gemäß

Lemma 4.4 gilt Pr [B] ≤ δ
2 .



AGML, Sommersemester 2020 Vorlesung 4 (Seite 3 von 5)

Darüber hinaus behaupten wir, dass Pr [B | A] ≥ 1
2 . Dafür sollten wir verstehen, was diese

bedingte Wahrscheinlichkeit bedeutet. Ereignis A ist bereits eingetreten. Dieses hängt von der
Menge S ab und sagt, dass es ein h ∈ H mit errD(h) ≥ ε aber errS(h) = 0. Damit Ereignis
B eintritt, ist es nun hinreichend, dass errS′(h) ≥ ε

2 . (Es ist nicht gefordert, dass h = h′ ist,
deshalb ist dies nur hinreichend aber nicht notwendig.) Nun können wir Lemma 4.3 nutzen. Die
Wahrscheinlichkeit, dass für genau dieses h gilt errS′(h) ≥ ε

2 ist mindestens 1
2 .

Nun nutzen wir Pr [B] ≥ Pr [B | A] Pr [A], um Pr [A] ≤ Pr[B]

Pr[B|A] zu erhalten. Mit Pr [B] ≤
δ
2 und Pr [B | A] ≥ 1

2 , folgt also Pr [A] ≤ δ.

3 Der Nicht-Realisierbare/Agnostische Fall

Bislang haben wir im Kontext von PAC-Learning nur den realisierbaren Fall behandelt. Das
bedeutet, es gibt nicht nur eine Grundwahrheit f : X → {−1,+1}, die die korrekten Labels
angibt, sondern auch, dass f in der Hypothesenklasse H enthalten ist, die wir betrachten.
Dies bedeutet insbesondere, dass es immer möglich ist, eine Hypothese zu finden, die keinen
Trainingsfehler hat.

In typischen Fragen des Maschinellen Lernens ist diese Annahme jedoch eigentlich nie
erfüllt. Die Merkmale beschreiben niemals die Wirklichkeit vollständig. Im Fall von Spam-
Klassifikation mögen als Merkmale Worthäufigkeiten, IP-Adressen, Daten im Header und so
weiter zur Verfügung stehen. Auf Basis dieser Information ist es aber unmöglich, alle E-Mails im-
mer korrekt zu klassifizieren. Etwas philosophischer kann man sich auch fragen, ob es überhaupt
eine klare Trennung zwischen Spam und erwünschten E-Mails gibt. Schließlich gibt es noch einen
weiteren Aspekt: Selbst wenn es möglich wäre, eine Hypothesenklassen anzugeben, die eine per-
fekte Klassifikation ermöglichen würde, möchte man aus Effizienzgründen vielleicht eine weniger
komplexe Klasse wählen.

Wie modellieren wir also Lernprobleme jenseits des realisierbaren Falls? Betrachten wir
zunächst das linke Beispiel von Abbildung 1. Hier ist X = [0, 1]2 und es gibt in der Tat eine
Grundwahrheit f : X → {−1,+1}, die allerdings relativ komplex ist. Nun könnte H die Menge
aller linearen Klassifikatoren sein, das heißt, die Funktionen, die durch eine Gerade positive
und negative Punkte trennen. In einem solchen Fall könnten wir weiterhin den tatsächlichen
Fehler errD,f (h) einer Hypothese h hinsichtlich einer Verteilung über Datenpunkte D und der
Grundwahrheit f definieren als

errD,f (h) := Prx∼D [h(x) 6= f(x)] .

Falls f 6∈ H ist, ist es nun aber nicht mehr möglich, dass errD,f (h) beliebig klein wird.
Das rechte Beispiel ist komplexer. Hier gibt es keine Grundwahrheit. Es könnte beispielsweise

sein, dass im Datenpunkte im grauen Bereich mit Wahrscheinlichkeit 50 % positiv und sonst
negativ sind. Hierfür schauen wir uns Wahrscheinlichkeitsverteilungen über X × {−1,+1} an.
Das heißt, diese Verteilung liefert einen zufälligen Datenpunkt mit Label. Äquivalent könnten
wir auch wieder eine Verteilung über unbeschriftete Datenpunkte haben und dann für jeden
von diesen eine Wahrscheinlichkeit eines positiven Labels.

Der tatsächlichen Fehler errD(h) einer Hypothese h hinsichtlich einer solchen Verteilung D
über Datenpunkt-/Label-Paare ist definiert als

errD(h) := Pr(x,y)∼D [h(x) 6= y] .

In beiden Fällen haben wir keine Hoffnung, eine Hypothese zu finden, sodass der tatsächliche
Fehler beliebig klein wird. Stattdessen hoffen wir nun, möglichst nah an die bestmögliche Hy-
pothese zu kommen.
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h

Abbildung 1: Beispiele von nicht-realisierbaren Fällen. Links gibt es keinen Hypothese h in
unserer Klasse der linearen Separatoren, die mit der Grundwahrheit f auf allen Punkten
übereinstimmt. Rechts sind im grauen Bereich die Labels zufällig; beispielsweise −1 oder +1
mit Wahrscheinlichkeit 50%. Es gibt also gar keine Funktion f : X → {0, 1}, die immer das
korrekte Label zurückgibt.

Definition 4.5. Eine Hypothesenklasse H ist PAC-lernbar (im agnostischen Sinn), wenn es
eine Funktion mH und einen Lernalgorithmus gibt, der für alle ε, δ > 0 und jede Verteilung
D über Datenpunkt-/Label-Paare mithilfe eines zufälligen Samples S der Größe mindestens
mH(ε, δ) aus D gezogen, eine Hypothese hS ∈ H berechnet, sodass

Pr

[
errD(hS) < min

h′∈H
errD(h′) + ε

]
≥ 1− δ .

Agnostisch bezieht sich hierbei darauf, dass nicht bekannt, aber auch unerheblich ist, ob es
eine Grundwahrheit (in H bzw. allgemein) gibt, oder nicht.
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Mehr zum Agnostischen Fall und Grenzen der Lernbarkeit

Thomas Kesselheim Letzte Aktualisierung: 8. Mai 2020

In der vergangenen Vorlesung haben wir die Definition von PAC-Lernen mit agnostischem
Sinn kennengelernt. Hier gibt es eine Verteilung D über Datenpunkt-/Label-Paaren, also über
der Menge X × {−1,+1}. Der tatsächliche Fehler einer Hypothese h is definiert als

errD(h) := Pr(x,y)∼D [h(x) 6= y] .

Es gibt im Allgemeinen keine Grundwahrheit f , die eine mögliche Hypothese ist. In diesem
Fall gilt auch minh′∈H errD(h′) > 0. Es ist somit nicht möglich, dass der tatsächliche Fehler
eines Algorithmus verschwindet, egal wie viele Samples wir ihm bereitstellen. Stattdessen ist
das Ziel, möglichst nah an minh′∈H errD(h′) heranzukommen.

1 Minimieren des Trainingsfehlers im Agnostischen Fall

Gegeben eine Trainingsmenge S = {(x1, y1), . . . , (xm, ym)} können wir den Trainingsfehler eine
Hypothese definieren als

errS(h) :=
1

m
|{h(xi) 6= yi}| .

Wir können uns nun Algorithmen anschauen, die diesen Trainingsfehler minimieren. Während
dies im realisierbaren Fall bedeutet, dass kein Fehler auf S gemacht werden darf, ist dies nun
nicht immer möglich. Es ist nur das Ziel, möglichst wenige Fehler zu machen.

Für den agnostischen Fall kann man eine sehr ähnliche Aussage wie im realisierbaren Fall
herleiten, die die Wachstumsfunktion nutzt.

Satz 5.1. Seien eine H beliebige Hypothesenklasse über X und D eine Verteilung über X ×
{−1,+1}. Seien ε > 0, δ > 0 beliebig und

m ≥ 32

ε2
ln

(
4ΠH(2m)

δ

)
.

Betrachte ein Sample S von m Datenpunkten mit Labels gezogen unabhängig und identisch
verteilt aus D. Es gilt mit Wahrscheinlichkeit mindestens 1 − δ, dass jede Hypothese h, die
errS(h) minimiert, auch errD(h) ≤ minh′∈H errD(h′) + ε erfüllt.

Insbesondere folgt aus dieser Schranke auch, dass eine Hypothesenklassen im agnostischen
Sinn PAC-lernbar ist, wenn ihr VC-Dimension endlich ist. Der Lernalgorithmus ist in diesem
Fall ein beliebiger Algorithmus, der den Trainingsfehler minimiert.

Viele Schritte im Beweis dieses Satzes sind analog zu seinem Pendant im realisierbaren Fall.
Um die Unterschiede und zusätzlichen Techniken zu verdeutlichen, betrachten wir nun den Fall
einer endlichen Hypothesenklasse H. Wir zeigen, dass für

m ≥ 2

ε2
ln

(
2|H|
δ

)
(1)

die Aussage von Satz 5.1 erfüllt ist. Hierzu beweisen wir folgende Behauptung.

Behauptung 5.2.

Pr
[
∃h ∈ H : |errD(h)− errS(h)| ≥ ε

2

]
< δ .
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Diese Aussage hilft uns wie folgt. Angenommen, wir haben eine Menge S, sodass

|errD(h)− errS(h)| < ε

2
für alle h ∈ H. (2)

Das heißt, der tatsächliche Fehler und der Trainingsfehler sind nah bei einander für jede mögliche
Hypothese. Ist nun h eine Hypothese, die den Trainingsfehler errS(h) minimiert; h′ eine Hypo-
these, die den tatsächlichen Fehler errD(h′) minimiert, dann gilt

errD(h) < errS(h) +
ε

2
≤ errS(h′) +

ε

2
< errD(h′) + ε .

Für den Beweis von Behauptung 5.2 zeigen nun wieder zunächst eine Aussage über eine
einzelne Hypothese.

Lemma 5.3. Betrachte eine feste Hypothese h ∈ H. Sei S eine Menge von m Datenpunkt-
/Label-Paaren aus D. Dann gilt für alle γ > 0

Pr [|errD(h)− errS(h)| ≥ γ] ≤ 2 exp
(
−2mγ2

)
.

Beweis. Diese Aussage folgt einigermaßen direkt aus der Hoeffding-Ungleichung. Diese lautet
wie folgt.

Lemma 5.4 (Hoeffding-Ungleichung). Seien Z1, . . . , ZN unabhängige Zufallsvariablen, sodass
ai ≤ Zi ≤ bi mit Wahrscheinlichkeit 1. Sei Z̄ = 1

N

∑N
i=1 Zi ihr Durchschnitt. Dann gilt für alle

γ ≥ 0

Pr
[
|Z̄ −E

[
Z̄
]
| ≥ γ

]
≤ 2 exp

(
− 2N2γ2
∑N

i=1(bi − ai)2

)
.

Die Ungleichung quantifiziert (und verallgemeinert) das Gesetz der großen Zahlen: Der
Durchschnitt vieler Züge aus derselben Verteilung konvergiert gegen den Erwartungswert.

Für unsere Aussage sei Zi = 1, falls h(xi) 6= yi und 0 sonst. Dann gilt Z̄ = errS(h). Außerdem
sind Z1, . . . , Zm unabhängig und es gilt 0 ≤ Zi ≤ 1. Also können wir die Hoeffing-Ungleichung
mit ai = 0, bi = 1 and N = m anwenden.

Schließlich stellen wir fest, dass E [Zi] = errD(h) für alle i und damit auch E
[
Z̄
]

=
1
m

∑m
i=1E [Zi] = errD(h). Die Aussage des Lemmas ist also genau die Schranke, die aus der

Hoeffding-Ungleichung folgt.

Jetzt ist der Beweis von Behauptung 5.2 auch unkompliziert.

Beweis von Behauptung 5.2. Wir nutzen wieder die Union Bound and wählen γ = ε
2 in Lem-

ma 5.3. Damit bekommen wir

Pr
[
∃h ∈ H : |errD(h)− errS(h)| ≥ ε

2

]
≤ |H| · 2 exp

(
−2m

ε2

4

)
≤ δ .

2 Unendliche VC-Dimension

Wir haben bereits gesehen, dass jede Hypothesenklassen H endlicher VC-Dimension PAC-
lernbar ist. Aber was ist im Fall von unendlicher VC-Dimension? Beispielsweise die Klasse
aller Hypothesen N → {−1,+1}. Oder allgemeiner alle Funktionen X → {−1,+1}. Wie wir
zeigen werden, sind diese nicht PAC-lernbar.

Satz 5.5. Jede Hypothesenklasse von unendlicher VC-Dimension ist nicht PAC-lernbar im
realisierbaren Sinn.
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Um diesen Satz zu beweisen, müssen wir zeigen, dass Lernalgorithmus A und Funktion
mH aus der Definition von PAC-Lernbarkeit nicht existieren. Wir werden die folgende Aussage
zeigen.

Behauptung 5.6. Sei H eine Hypothesenklasse von VC-Dimension mindestens d. Dann gibt
es für jeden Lernalgorithmus A eine Verteilung D und eine Grundwahrheit f , sodass auf einer
Trainingsmenge S der Größe höchstens d

2 gilt: errD(hS) ≥ 1
8 mit Wahrscheinlichkeit mindestens

1
7 .

Beweis. Laut Definition spaltet H eine Menge der Größe d auf. Sei also T ⊆ X, |T | = d, eine
solche Menge. Es gilt nun |H|T | = 2d. Definiere k = 2d und schreibe H|T = {`1, . . . , `k}, wobei
jeweils `i : T → {−1,+1} und alle `i unterschiedlich sind.

Für jedes `i finden wir ein fi ∈ H, sodass fi(x) = `i(x) für alle x ∈ X. Jede dieser Funktionen
fi könnte die Grundwahrheit sein. Die entscheidende Beobachtung ist, dass wenn uns lediglich
ein Sample der Größe d

2 gegeben wird, wir für höchstens d
2 Punkte in T das korrekte Label

wissen. Für die übrigen Punkte können die Label vollkommen beliebig sein.
Betrachte nun einen festen Lernalgorithmus und als Verteilung D die uniforme Verteilung

auf T . Sei hS,i die Hypothese, die der Lernalgorithmus auf Sample S berechnet, wenn die
Grundwahrheit fi ist1. Wir möchten nun zeigen, dass

max
i

Pr

[
errD,fi(hS,i) ≥

1

8

]
≥ 1

7
.

Das heißt, dass es eine Grundwahrheit gibt, für die der Algorithmus schlecht ist. Definieren wir
nun Zufallsvariablen Zi (abhängig von S), so dass Zi = 1 falls errD,fi(hS,i) ≥ 1

8 , anderenfalls
Zi = 0.

In dieser Notation wollen wir zeigen, dass

max
i

Pr [Zi = 1] ≥ 1

7
.

Hierfür ist es hinreichend, dass

1

k

k∑

i=1

Pr [Zi = 1] ≥ 1

7
.

Da Pr [Zi = 1] = E [Zi], ist diese Aussage mittels Linearität des Erwartungswertes äquivalent
zu

E

[
k∑

i=1

Zi

]
≥ k

7
.

Betrachten wir ein festes x ∈ T , dann gibt es für jede Hypothese fi genau eine Hypothese
f−i, die überall auf T mit fi übereinstimmt, nur fi(x) 6= f−i(x). Falls x 6∈ S, muss folglich gelten
hS,i = hS,−i. Also muss entweder hS,i(x) 6= fi(x) oder hS,−i(x) 6= f−i(x) sein. Allgemeiner gesagt
bedeutet dies, dass für alle x 6∈ S gilt, dass hS,i(x) 6= fi(x) für genau die Hälfte aller i.

Für jede feste Menge S mit |S| ≤ 1
2 |T | können wir also schreiben

1

k

k∑

i=1

errD,fi(hS,i) ≥
1

2

|T \ S|
|T | ≥

1

4
.

1Prinzipiell könnte hS,i auch randomisiert sein. Der Beweis würde genauso gelten. Der Einfachheit halber
gehen wir aber davon aus, dass hS,i deterministisch von S und i abhängt.
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Wenn wir S durch d
2 Züge aus D bestimmen, ist |T \ S| ≥ 1

2 |T |.
Andererseits gilt auch

k∑

i=1

errD,fi(hS,i) ≤
k∑

i=1

Zi +
1

8

(
k −

k∑

i=1

Zi

)
=

1

8
k +

7

8

k∑

i=1

Zi ,

denn diejenigen i mit Zi = 1 tragen höchstens 1, die übrigen höchstens 1
8 zu der Summe bei.

Folglich gilt also für jedes S immer

k∑

i=1

Zi ≥
k

7
.

Damit gilt die Ungleichung erst recht auch im Erwartungswert über S.

3 Gesamtbild: PAC-Lernbarkeit

Zusammengenommen haben wir nun folgendes Bild von Implikationen.

H ist PAC-lernbar im realisierbaren Sinn H ist PAC-lernbar im agnostischen Sinn

H hat endliche VC-Dimension

(4)

(1)

(2)(3)

Implikation (1) haben wir in den vergangenen Vorlesungen gezeigt. (2) folgt aus Satz 5.1,
den wir nicht bewiesen haben. (3) ist die Aussage von Satz 5.5. (4) ist eine Übungsaufgabe.
Insgesamt sind also alle drei Begriffe äquivalent.

Dies bedeutet übrigens nur, dass bei Hypothesenklassen mit endlicher VC-Dimension
”
ge-

nügend“ Samples für bei jeder Verteilung D ausreichen, um die beste Hypothese zu finden.
Es bedeutet nicht, dass

”
genügend“ im realisierbaren und im agnostischen Fall gleich große

Zahlen sind. Auch kann es bei Hypothesenklassen mit unendlicher VC-Dimension Verteilungen
D geben, die Lernbarkeit ermöglichen.
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Lineare Klassifikation

Anne Driemel Letzte Aktualisierung: 14. Mai 2020

Die lineare Klassifikation ist eine der grundlegendsten Methoden im Maschinellen Lernen.
Die entsprechende Hypothesenklasse H ist definiert als die Menge von Funktionen der Form
ha,b : Rd → {−1,+1} mit a ∈ Rd, b ∈ R und1

ha,b(x) =

{
+1 falls 〈a, x〉 ≥ b
−1 sonst

Wir können dies wieder äquivalent als Mengensystem beschreiben mit den Mengen

ra,b =
{
x ∈ Rd

∣∣∣ 〈a, x〉 ≥ b
}

Die Menge ra,b definiert einen Halbraum von Rd. Ein Halbraum ist eine Menge, die durch
eine Hyperebene beschränkt ist. In unserem Fall ist das die folgende Hyperebene

` =
{
x ∈ Rd

∣∣∣ 〈a, x〉 = b
}

Im R2 können wir uns das geometrisch vorstellen. Die Hyperebene ` ist orthogonal zu der Ge-
raden g durch den Nullpunkt, die den Vektor a enthält und schneidet diese Gerade im Abstand∣∣∣ b
‖a‖

∣∣∣ zum Nullpunkt2. Der Halbraum ra,b umfasst alle Punkte zu der Seite von ` die durch die

Richtung des Vektors a angegeben ist.

a

∣∣∣ b
‖a‖

∣∣∣

`

1Für Vektoren x = (x1, . . . , xd) und y = (y1, . . . , yd) ist das Skalarprodukt definiert als 〈x, y〉 =
∑d

i=1 xiyi
2Die Norm eines Vektors x = (x1, . . . , xd) ist hier definiert als ‖x‖ =

√∑d
i=1 x

2
i
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1 VC-dimension von Halbräumen

Wir wollen heute die VC-dimension des Mengensystems aller Halbräume analysieren. Zunächst
wollen wir dazu ein paar grundlegende Begriffe einführen.

Definition 6.1 (Affinkombination). Für beliebige Punkte p1, . . . , pn ∈ Rd und Parameter α1, . . . , αn ∈
R mit

∑n
i=1 αi = 1 ist

∑n
i=1 αipi eine Affinkombination. Die Punkte p1, . . . , pn sind affin

abhängig wenn es einen Punkt pi gibt, sodass pi =
∑n

j=1
j 6=i

αipi. Also genau dann wenn wir

einen Punkt der Menge durch eine Affinkombination der anderen Punkte ausdrücken können.
Die Menge aller Affinkombinationen einer festen Menge wird als ihre affine Hülle bezeichnet.

Eine Affinkombination ist also eine Linearkombination mit der zusätzlichen Bedingung, dass
die Summe der Koeffizienten 1 ergibt. Mithilfe von Affinkombinationen lassen sich Geraden,
Ebenen und Hyperebenen darstellen.

Beispiel 6.2. Die Menge aller Affinkombinationen zweier Punkte p1, p2 ∈ R2 ist

{ tp1 + (1− t)p2 | t ∈ R }

Das ist die Menge aller Punkte auf der Geraden, welche p1 und p2 enthält.

Lemma 6.3. Jede Menge von d+ 2 Punkten im Rd ist affin abhängig.

Beweis. Sei A = {p1, . . . , pd+2}. Setze ein beliebiges pi fest und betrachte für i 6= j die d + 1
Punkte qj = pj − pi. Da d + 1 Punkte linear abhängig sind, existieren Parameter βj für i 6= j
und ein Punkt qr sodass

qr =
d+2∑

j=1
i 6=j und j 6=r

βjqj .

Somit gilt

pr = qr + pi =




d+2∑

j=1
i 6=j und j 6=r

βjqj


+ pi =

d+2∑

j=1
i 6=j und j 6=r

βjpj −




d+2∑

j=1
i 6=j und j 6=r

βj


 pi + pi

Jetzt können wir βi = −
(∑d+2

j=1
i 6=j und j 6=r

βj

)
+ 1 definieren und somit haben wir

∑d+2
j=1
j 6=r

βj = 1

womit die Bedingung für eine Affinkombination erfüllt ist.

Definition 6.4 (Konvexkombination). Für beliebige Punkte p1, . . . , pn ∈ Rd und Parameter
α1, . . . , αn ∈ R mit

∑n
i=1 αi = 1 und αi ≥ 0 für alle 1 ≤ i ≤ n ist

∑n
i=1 αipi eine Konvexkombi-

nation. Die Menge aller Konvexkombinationen einer festen Menge wird als ihre konvexe Hülle
bezeichnet.

Beispiel 6.5. Die konvexe Hülle von zwei Punkten p1, p2 ∈ R2 ist die Menge

{ tp1 + (1− t)p2 | t ∈ [0, 1] } .

Das ist die Strecke mit Endpunkten p1 und p2.

Beispiel 6.6. Die konvexe Hülle von drei Punkten p1, p2, p3 ∈ R2 ist die Menge

{ α1p1 + α2p2 + α3p3 | α1, α2, α3 ≥ 0 und α1 + α2 + α3 = 1 } .

Das ist das Dreieck mit den Eckpunkten p1, p2 und p3.
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1.1 Radon’s Lemma

Lemma 6.7 (Radon’s Lemma). Für jede Menge A von d + 2 Punkten im Rd existieren Teil-
mengen A1, A2 ⊆ A mit A1 ∩A2 = ∅ und ein Punkt q, sodass q sowohl als Konvexkombination
von A1 dargestellt werden kann, als auch eine Konvexkombination von A2. Wir bezeichnen q
als Radonpunkt der Mengen A1 und A2.

Beweis. Sei A = {p1, . . . , pd+2}. Da wir d+2 Punkte haben, sind diese affin abhängig. Das heißt,
es gibt ein pi ∈ A welches durch eine Affinkombination der anderen Punkte in A dargestellt
werden kann. Also existieren Parameter αj für 1 ≤ j ≤ n mit i 6= j, sodass

pi =
d+2∑

j=1
i6=j

αjpj mit
d+2∑

j=1
i 6=j

αj = 1

Setzen wir nun αi = −1, dann können wir αipi auf beiden Seiten der Gleichung addieren und
bekommen

0 =
d+2∑

j=1

αjpj mit
d+2∑

j=1

αj = 0.

Wir definieren nun zwei Indexmengen I1 = { i | αi > 0 } und I2 = { i | αi < 0 }. Durch
äquivalente Umformung bekommen wir

−
∑

i∈I2
αipi =

∑

i∈I1
αipi und −

∑

i∈I2
αi =

∑

i∈I1
αi

Setzen wir nun γ =
∑

i∈I1 αi, dann definiert q1 =
∑

i∈I1 βipi mit βi = αi
γ eine Konvexkombi-

nation der Punkte in A mit Index in I1. Ähnlich definert q2 =
∑

i∈I2 βipi mit βi = −αi
γ eine

Konvexkombination der Punkte in A mit Index in I2. Weiter ist q1 = q2 und I1 ∩ I2 = ∅. Damit
ist der Satz bewiesen.

Beispiel 6.8 (Radonpunkt). Für 4 verschiedene Punkte a, b, c, d in der Ebene gibt es im Prinzip
zwei Möglichkeiten wie die Teilmengen in Radon’s Lemma zueinander liegen können.

a

b
c

d a

b
c

d

(a) A1 = {a}, A2 = {b, c, d}.
Ein Punkt a ist in der konvexen Hülle
der anderen Punkte {b, c, d} enthalten.
Hier ist a ein Radonpunkt.

(b) A1 = {a, b}, A2 = {c, d}.
Zwei Strecken ab und cd schneiden sich
in einem Punkt. Der Schnittpunkt
stellt einen Radonpunkt dar.
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1.2 Beweis der VC-dimension

Satz 6.9. Die VC-dimension von Halbräumen in Rd ist höchstens d+ 1.

Beweis. Sei R das Mengensystem von Halbräumen in Rd. Das heißt, jede Menge in R ist von
der Form ra,b =

{
x ∈ Rd

∣∣ 〈a, x〉 ≥ b
}

mit a ∈ Rd, b ∈ R. Wir zeigen, dass die VC-dimension
höchstens d + 1 sein kann. Angenommen dem wäre nicht so. Wir führen diese Annahme zu
einem Widerspruch. Sei A = {p1, . . . , pd+2} ⊆ Rd eine Menge von d + 2 Punkten die durch
R aufgespalten wird. Laut Radon’s Lemma gibt es zwei disjunkte Teilmengen A1, A2 ⊆ A die
einen gemeinsamen Radonpunkt q besitzen. Das heisst, es gibt Konvexkombinationen

q =
∑

i∈I1
αipi und q =

∑

i∈I2
βipi

wobei I1 und I2 die Indexmengen von A1 und A2 sind.
Sei ra,b der Halbraum, der A1 von A abspaltet. Dann ist

A1 = ra,b ∩A und A2 ∩ ra,b = ∅

also ist
〈a, pi〉 ≥ b für alle i ∈ I1

und
〈a, pi〉 < b für alle i ∈ I2

Betrachten wir nun 〈a, q〉, so können wir mit der ersten Konvexkombination unter Nutzung der
Linearität des Skalarprodukts herleiten

〈a, q〉 =

〈
a,
∑

i∈I1
αipi

〉
=
∑

i∈I1
αi 〈a, pi〉 ≥

∑

i∈I1
αib = b

Die Abschätzung αi 〈a, pi〉 ≤ αib können wir natürlich nur machen, da alle αi positiv sind. Die
letzte Gleichheit folgt aus der anderen Bedingung an die Konvexkombination, dass die Summe
der Koeffizienten gleich 1 ist. Ähnlich können wir mit der zweiten Konvexkombination herleiten

〈a, q〉 =

〈
a,
∑

i∈I2
βipi

〉
=
∑

i∈I2
βi 〈a, pi〉 <

∑

i∈I2
βib = b

Damit ergibt sich ein Widerspruch mit b > 〈a, q〉 ≥ b.

Geometrisch kann man sich den Beweis für die obere Schranke wie folgt veranschaulichen.
Laut Radon’s Lemma gibt es zwei disjunkte Teilmengen A1, A2 ⊆ A, sodass die beiden konvexen
Hüllen von A1 und A2 nicht zueinander disjunkt sind. Ein Halbraum, der A1 von A abspaltet
ist durch eine Hyperebene beschränkt, die A1 und A2 linear separiert. Die Hyperebene würde
dann aber auch die beiden konvexen Hüllen linear separieren.

Satz 6.10. Die VC-dimension von Halbräumen in Rd ist mindestens d+ 1.

Beweis. Wir zeigen, dass es eine Punktmenge mit d+1 Punkten gibt, die durch R aufgespalten
wird. Dafür konstruieren wir eine Menge A ⊆ Rd mit |A| = d + 1, die durch R aufgespalten
wird. Sei ei der Einheitsvektor, der überall 0 ist und nur an der iten Koordinate eine 1 hat. Wir
definieren als Menge A die d Einheitsvektoren und den Nullvektor e0 = (0, . . . , 0). Nun können
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wir für jede Teilmenge A′ ⊆ A zeigen, dass A′ abgespalten wird. Wir wählen a = (a1, . . . , ad) ∈
Rd und b ∈ R wie folgt

ai =

{
1 falls ei ∈ A′,
−1 sonst

und b =

{
0 falls e0 ∈ A′
1 sonst

Dann gilt 〈a, e0〉 = 0 und für 0 < i ≤ d

〈a, ei〉 =

{
1 falls ei ∈ A′
−1 sonst

Durch eine Fallanalyse kann man nun zeigen, dass für alle ei ∈ A gilt, dass

〈a, ei〉 ≥ b ⇔ ei ∈ A′

Somit kann die Menge A′ immer durch einen Halbraum abgespalten werden.

Beispiel 6.11. Im Beispiel von d = 2 können wir exemplarisch Teilmengen von A = {e0, e1, e2}
aus dem obigen Beweis und die zugehörigen Halbräume visualisieren.

a = (1, 1)
b = 1

e0
e1

e2

(a) A′ = {e1, e2}

a = (1,−1)
b = 0

e0
e1

e2

(b) A′ = {e0, e1}

a = (−1,−1)
b = 0

e0
e1

e2

A′ = {e0}

(c) A′ = {e0}

2 Homogene Halbräume

Sei R0 das Mengensystem aller Halbräume der Form

rw =
{
x ∈ Rd

∣∣∣ 〈w, x〉 ≥ 0
}

mit w ∈ Rd

Wir bezeichnen Halbräume dieser Form als homogene Halbräume.
Mit dem Mengensystem R0 sind auch allgemeine Halbräume im Rd−1 darstellbar. Insbeson-

dere können wir eine Funktion φ : Rd−1 → Rd definieren als φ(x) = (x1, . . . , xd−1, 1) und dann
existiert für jeden Halbraum

ra,b =
{
x ∈ Rd−1

∣∣∣ 〈a, x〉 ≥ b
}

mit a ∈ Rd−1, b ∈ R

ein Halbraum rw ∈ R0 sodass für alle x ∈ Rd−1 gilt

x ∈ ra,b ⇔ φ(x) ∈ rw
insbesondere können wir w = (a1, . . . , ad−1,−b) wählen damit dies erfüllt ist.

Beispiel 6.12. Für d = 2 können wir uns diese Halbräume im konkreten Beispiel wie folgt
veranschaulichen. Sei a = 1, b = −2, dann ist w = (1, 2). Die Gerade, die den Halbraum rw im
R2 beschränkt schneidet die horizontale Gerade bei y = 1 in der x-Koordinate b

‖a‖ . Die Punkte
auf der Horizontalen, die in rw enthalten sind, entsprechen den Punkten in R, die in ra,b ⊆ R
enthalten sind.
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b
‖a‖

(x1, 1)

x1

x2

w
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• Jǐŕı Matouŝek, Lectures on Discrete Geometry, Springer Graduate Texts in Mathematics.



AGML, Sommersemester 2020 Vorlesung 7 (6 Seiten)

Lineare Klassifikation II

Anne Driemel Letzte Aktualisierung: 11. Mai 2020

In der letzten Vorlesung haben wir die VC-dimension von Halbräumen analysiert. Die ent-
sprechende Hypothesenklasse H ist definiert als die Menge von Funktionen der Form hw,u :
Rd → {−1,+1} mit w ∈ Rd, u ∈ R und

hw,u(x) =

{
+1 falls 〈w, x〉 ≥ u
−1 sonst

Lernalgorithmen, die unter Annahme dieser Hypothesenklasse arbeiten, werden unter dem Be-
griff der linearen Klassifikation zusammengefasst.

Anhand der VC-dimension können wir feststellen, dass eine Hypothesenklasse PAC-lernbar
ist. Ein anderer Aspekt ist die Berechnungskomplexität des Lernproblems. Zur Erinnerung, eine
Hypothesenklasse ist effizient PAC-lernbar, wenn sie mithilfe eines Polynomialzeitalgorithmus
A PAC-lernbar ist.

Wir widmen uns heute der Berechnungskomplexität der linearen Klassifikation. Sei S =

{(x(1), y(1)), . . . , (x(m), y(m))} eine beschriftete Trainingsmenge mit x(i) = (x
(i)
1 , . . . , x

(i)
d ) ∈ Rd

und y(i) ∈ {−1,+1}. Die Aufgabe des Lernalgorithmus ist es, Werte für w ∈ Rd und u ∈ R zu
finden sodass der Trainingsfehler

1

m

∣∣∣
{
i ∈ {1, . . . ,m}

∣∣∣ hw,u(x(i)) 6= y(i)
}∣∣∣

minimiert wird.

1 Realisierbarer Fall

Im realisierbaren Fall gehen wir davon aus, dass eine Hypothese mit Trainingsfehler 0 existiert.
Das entspricht dem Fall, dass die positive und die negative Menge durch eine Hyperebene
separierbar sind. In diesem Fall behaupten wir, dass eine solche Hypothese mithilfe linearer
Programmierung gefunden werden kann.

Ein lineares Programm bekommt als Eingabe eine Matrix A ∈ Rm×n und Spaltenvektoren
b ∈ Rm und c ∈ Rn. Die Aufgabe ist es, einen Spaltenvektor v ∈ Rn mit Av ≥ b zu finden,
der 〈c, v〉 maximiert. Falls dies nicht möglich ist, dann gibt es zwei Möglichkeiten. Entweder
existiert kein v ∈ Rn welches Av ≥ b erfüllt, oder es existiert kein Maximum für 〈c, v〉 in der
Menge der v ∈ Rd, die Av ≥ b erfüllen. Ein lineares Programm kann in polynomieller Zeit in
n,m und der Größe der Koordinaten in A, b, c gelöst werden.

Satz 7.1. Im realisierbaren Fall können wir in polynomieller Zeit in m, d und der Größe der
Koordinaten eine Hypothese hŵ,û ∈ H finden, die S korrekt klassifiziert (d.h. hŵ,û(xi) = y(i) für
alle i).

Beweis. Wir können die Bedingung hŵ,û(x(i)) = y(i) wie folgt ausschreiben. Gesucht sind ŵ ∈ Rd
und û ∈ R, sodass für alle 1 ≤ i ≤ m gilt:

(i)
〈
ŵ, x(i)

〉
≥ û wenn y(i) = +1, und

(ii)
〈
ŵ, x(i)

〉
< û wenn y(i) = −1
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Wir wollen nun schrittweise ein lineares Programm herleiten, um Werte für ŵ und û zu
finden, die (i) und (ii) erfüllt. Laut der Annahme im Satz existieren w und u, welche diese
Bedingungen für w = ŵ und u = û erfüllen. Daraus folgt

max
1≤i≤m

y(i)=−1

〈
w, x(i)

〉
< u ≤ min

1≤i≤m

y(i)=+1

〈
w, x(i)

〉
(1)

wobei w und u unbekannt sind. Da das Maximum auf der linken Seite über eine endliche Menge
gebildet wird, existiert ein u′ ∈ R mit

max
1≤i≤m

y(i)=−1

〈
w, x(i)

〉
< u′ < u ≤ min

1≤i≤m

y(i)=+1

〈
w, x(i)

〉

Also gilt für alle 1 ≤ i ≤ m, dass

y(i)
〈
w, x(i)

〉
> y(i)u′

Weiter können wir die rechte Seite subtrahieren und bekommen

y(i)
〈
w, x(i)

〉
− y(i)u′ > 0

Es folgt, dass ein Wert γ > 0 existiert, sodass für alle 1 ≤ i ≤ m

y(i)
〈
w, x(i)

〉
− y(i)u′ ≥ γ

Das können wir äquivalent umformen zu

〈
y(i)x(i), w′′

〉
− y(i)u′′ ≥ 1 (2)

mit w′′ = w
γ und u′′ = u′

γ .
Wir können nun die Zeilen der Matrix A des linearen Programms definieren als (d + 1)-

dimensionale Zeilenvektoren

ai = (y(i)x
(i)
1 , y(i)x

(i)
2 , . . . , y(i)x

(i)
d ,−y(i))

für 1 ≤ i ≤ m. Für b wählen wir den m-dimensionaler Spaltenvektor (1, . . . , 1) und für c den
m-dimensionalen Spaltenvektor (0, . . . , 0).

Das lineare Programm findet dann ein v = (v1, . . . , vn) mit Av ≥ b, sodass 〈c, v〉 maximiert
wird. Dabei ist 〈c, v〉 = 0 für alle v ∈ Rn und wir interessieren uns eigentlich nur für den ersten
Teil der Bedingung.

Laut unserem linearen Programm haben wir dann ein v, das (2) erfüllt mit v = (w′′1 , . . . , w
′′
d , u
′′).

Durch unsere Herleitung aus w und u wissen wir, dass solch ein v existieren muss. Das heisst,
wir können nun w′′ ∈ Rn und u′′ aus den Koordinaten von v ablesen. Wir wählen nun

ŵ =
w′′

‖w′′‖

und
û = min

1≤i≤m

y(i)=+1

〈
ŵ, x(i)

〉
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und geben diese zurück als Lösung. Tatsächlich klassifiziert die Hypothese hŵ,û alle Punkte in
S korrekt, da

ŵ =
w′′

‖w′′‖ =
(w1
γ , . . . ,

wd
γ )

‖(w1
γ , . . . ,

wd
γ )‖ =

1
γw

1
γ ‖w‖

=
w

‖w‖
und weil aus (1) folgt, dass auch

max
1≤i≤m

y(i)=−1

〈
w

‖w‖ , x
(i)

〉
< min

1≤i≤m

y(i)=+1

〈
w

‖w‖ , x
(i)

〉

gilt.

2 Nicht-Realisierbarer Fall

Im nicht-realisierbaren Fall gehen wir nicht davon aus, dass die positive Menge und die ne-
gative Menge durch eine Hyperebene separierbar sind. In diesem Fall ist es NP-schwer einen
Halbraum zu finden, der den Trainingsfehler minimiert. Wir zeigen dies im speziellen Fall der
Hypothesenklasse H0 von Funktionen der Form hw : Rd → {−1,+1} mit w ∈ Rd und

hw(x) =

{
+1 falls 〈w, x〉 ≥ 0

−1 sonst

In der letzten Vorlesung hatten wir gesehen, dass diese Klasse, mithilfe einer Transformation
in einen höherdimensionalen Raum, auch allgemeine lineare Klassifikatoren darstellen kann.

Wir zeigen die NP-Schwerheit des Lernproblems unter H0 mithilfe einer Reduktion von dem
folgenden NP-schweren Problem.

Definition 7.2 (MAX-E2-SAT). Gegeben eine Menge von m Klauseln über n booleschen Varia-
blen x1, . . . , xn, wobei jede Klausel genau zwei Literale (negierte oder nicht-negierte Variablen)
enthält. Finde eine Wahrheitsbelegung der Variablen, welche die Anzahl der erfüllten Klauseln
maximiert.

Beispiel 7.3. Sei {(x1 ∨ x2), (x1 ∨ x2), (x2 ∨ x3), (x1 ∨ x3)} eine Menge von Klauseln. Eine
Wahrheitsbelegung, welche die Anzahl der erfüllten Klauseln maximiert, ist x1 = 1, x2 = 0,
x3 = 1. Diese Wahrheitsbelegung ist maximal, da alle Klauseln durch sie erfüllt werden.

Satz 7.4 (H̊astad). Falls P 6= NP , dann existiert kein polynomieller Algorithmus für MAX-
E2-SAT. (ohne Beweis)

Wir wollen aus dem Satz von H̊astad folgern, dass auch das Lernproblem überH0 NP-schwer
ist. Das heisst, wir wollen den folgenden Satz zeigen.

Satz 7.5. Falls P 6= NP , dann existiert kein polynomieller Algorithmus, der ein h ∈ H0 findet
welches den Trainingsfehler minimiert.

Gegeben sei eine Menge I von m Klauseln über n Variablen x1, . . . , xn als Eingabe für das
MAX-E2-SAT Problem. Wir transformieren diese Eingabe in eine Eingabe I ′ für das Lern-
problem über H0. Wir definieren für jede Klausel C einen Punkt φ(C) ∈ Rn mithilfe einer
Funktion

φj(C) =





1 falls xj ∈ C
−1 falls xj ∈ C

0 sonst
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Sei φ(C) = (φ1(C), . . . , φn(C)). Wir geben diesem Punkt ein positives Label.
Zusätzlich definieren wir für jede Klausel C über Variablen xi, xj eine Menge von vier Punk-

ten {ei, ej ,−ei,−ej}, wobei ei den Einheitsvektor von Rn bezeichnet, der überall 0 ist, und nur
an der iten Koordinate eine 1 hat. Wir geben diesen Punkten ein negatives Label und fügen sie
in zweifacher Ausführung hinzu. Die Klausel C erzeugt also eine beschriftete Menge

Φ(C) =
{

(φ(C),+1), (ei,−1), (ei,−1), (ej ,−1), (ej ,−1), (−ei,−1), (−ei,−1), (−ej ,−1), (−ej ,−1)
}

Die Eingabe I ′ für das Lernproblem besteht nun aus der Vereinigung dieser beschrifteten
Punktmengen über alle Klauseln. Beachte, dass in der erzeugten Menge Punkte mehrfach vor-
kommen.

Definition 7.6. Sei hw ∈ H0 eine Hypothese mit w = (w1, . . . , wn). Wir definieren eine Funk-
tion α : Rn → {0, 1}n mit

αi(w) =

{
1 falls wi ≥ 0

0 sonst

als α(w) = (α1(w), . . . , αn(w)). Die Funktion bildet die Hypothese hw auf eine Wahrheitsbele-
gung für die Variablen x1, . . . , xn ab, indem wir xi = αi(w) setzen.

Sei hw ∈ H0 eine Hypothese, die den Trainingsfehler auf Eingabe I ′ minimiert. Wir behaup-
ten, dass α(w) die Anzahl der erfüllten Klauseln in I maximiert. Um das zu zeigen, müssen wir
zunächst ein paar strukturelle Eigenschaften unserer Konstruktion zeigen.

Behauptung 7.7. Wenn für ein k ≥ 0 eine Wahrheitsbelegung a ∈ {0, 1}n existiert, die
k Klauseln von I erfüllt, dann existiert ein hw ∈ H0, welches k + 4m Punkte in I ′ korrekt
klassifiziert.

Beweis. Dafür setzen wir

wi =

{
1 falls ai = 1

−1 falls ai = 0

Dann ist 〈w, φ(C)〉 ≥ 0 genau dann wenn die Wahrheitsbelegung a die Klausel C erfüllt. Das
lässt sich leicht durch eine Fallanalyse zeigen, die wir hier nicht ausführen. Ferner werden genau
4 negative Punkte von Φ(C) korrekt klassifiziert. Damit ist Behauptung 7.7 bewiesen.

Beispiel 7.8. Sei C = (xi ∨ xj), dann ist φi(C) = 1 und φj(C) = −1 und alle anderen
Koordinaten von φ(C) sind gleich null. Das heisst, φ(C) liegt in dem linearen Unterraum,
der durch die Einheitsvektoren ei und ej aufgespannt wird. Daher können wir uns die vier
Hypothesen aus obigem Beweis, die den vier Wahrheitsbelegungen von xi und xj entsprechen,
wie folgt vorstellen:

ei

ej

(a) xi = 1, xj = 1
(xi ∨ xj) = 1

φ(C)

−ei

−ej

ei

ej

(b) xi = 0, xj = 1
(xi ∨ xj) = 0

φ(C)

−ei

−ej

ei

ej

(c) xi = 0, xj = 0
(xi ∨ xj) = 1

φ(C)

−ei

−ej

ei

ej

(d) xi = 1, xj = 0
(xi ∨ xj) = 1

φ(C)

−ei

−ej
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Der Fall (b) ist die einzige Belegung, wo die Klausel nicht erfüllt ist. Das ist auch der einzige
Fall, in dem φ(C) nicht korrekt klassifiziert wird. Weiter ist die Anzahl der negativen Punkte,
die von hw als negativ klassifiziert werden, immer genau 4m. Also werden genau k+4m Punkte
korrekt klassifiziert. Die anderen Klauseln können auf die gleiche Art analysiert werden.

Behauptung 7.9. Sei hw ∈ H0 mit w = (w1, . . . , wn) ∈ Rn eine Hypothese, die den Trainings-
fehler minimiert, dann ist wi 6= 0 für alle 1 ≤ i ≤ n.

Beweis. Sei wi = 0 für eine Hypothese hw. Sei C eine Klausel über Variablen xi und xj . Dann
ist 〈w, ei〉 ≥ 0, sowie 〈w,−ei〉 ≥ 0. Gleichzeitig ist entweder 〈w, ej〉 ≥ 0, oder 〈w,−ej〉 ≥ 0. Da
diese Punkte in zweifacher Ausführung in Φ(C) vorkommen, klassifiziert hw also mindestens
6 Punkte von Φ(C) falsch, also höchstens 3 Punkte korrekt. Gleichzeitig klassifiziert hw′ mit
einem beliebigen w′ = (w′1, . . . , w

′
n) mit w′j 6= 0 für alle 1 ≤ j ≤ n mindestens 4 negative Punkte

pro Klausel korrekt. Damit ist Behauptung 7.9 bewiesen.

Behauptung 7.10. Sei hw ∈ H0 mit w ∈ Rn eine Hypothese, die den Trainingsfehler mini-
miert. Sei φ(C) ein Punkt, der durch hw korrekt klassifiziert wird, dann wird die Klausel C
durch α(w) erfüllt.

Beweis. Das kann wieder durch eine Fallanalyse gezeigt werden. Sei C die Klausel (xi ∨ xj).
Dann ist φi(C) = 1 und φj(C) = 1 und alle anderen Koordinaten sind gleich null. Daher gilt
für alle w ∈ Rn

〈w, φ(C)〉 ≥ 0 ⇔ wi + wj ≥ 0

Wir unterscheiden die folgenden Fälle.

(a) (wi > 0, wj > 0)⇒ (xi = 1, xj = 1)⇒ C ist durch α(w) erfüllt

(b) (wi > 0, wj < 0)⇒ (xi = 1, xj = 0)⇒ C ist durch α(w) erfüllt

(c) (wi < 0, wj > 0)⇒ (xi = 0, xj = 1)⇒ C ist durch α(w) erfüllt

(d) (wi < 0, wj < 0)⇒ (wi + wj < 0)⇒ φ(C) wird nicht korrekt klassifiziert

Wir können annehmen, dass wi 6= 0 und wj 6= 0, da sonst hw nicht optimal ist (Behaup-
tung 7.9). Somit ist die obige Fallanalyse für die betrachtete Klausel C vollständig. Die anderen
Möglichkeiten für C sind die Klauseln (xi ∨ xj), (xi ∨ xj), (xi ∨ xj). In diesen Fällen kann die
Behauptung analog gezeigt werden, was wir hier nicht ausführen. Damit wäre Behauptung 7.10
bewiesen.

Beweis von Satz 7.5. Wir können nun alles zusammenführen und unseren Satz beweisen. Laut
Behauptung 7.7 existiert für jede Wahrheitsbelegung mit k erfüllten Klauseln von I eine Hy-
pothese, die k + 4m Punkte in I ′ korrekt klassifiziert. Gleichzeitig folgt aus Behauptung 7.9
für jedes hw, das den Trainingsfehler auf I ′ minimiert, dass die Anzahl der negativen Punkte,
die durch hw korrekt klassifiziert werden, gleich 4m ist. Wenn hw also k + 4m Punkte korrekt
klassifiziert, dann sind k Punkte davon positiv. Aus Behauptung 7.10 folgt dann, dass hw eine
Wahrheitsbelegung α(w) impliziert, die mindestens k Klauseln von I erfüllt. Wenn es also eine
Wahrheitsbelegung gibt, die k Klauseln in I erfüllt, dann gibt unsere Reduktion mithilfe eines
Lernalgorithmus für I ′ eine Wahrheitsbelegung zurück, die mindestens k Klauseln in I erfüllt.
Gäbe es also einen polynomiellen Algorithmus für das Lernproblem, dann gäbe es auch einen
polynomiellen Algorithmus für MAX-E2-SAT. Damit folgt Satz 7.5 aus Satz 7.4.
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Support Vector Machines und Konvexität

Thomas Kesselheim Vorschau Letzte Aktualisierung: 18. Mai 2020

Wie auch in den vergangenen Vorlesungen werden wir uns heute wieder mit linearer Klassi-
fikation beschäftigen. Wir erinnern uns, dass die Hypothesenklasse H definiert ist als die Menge
von Funktionen der Form hw,u : Rd → {−1,+1} für w ∈ Rd und u ∈ R und

hw,u(x) =

{
+1 falls 〈w,x〉 ≥ u
−1 sonst

.

Hierbei beschreibt 〈w,x〉 das Skalarprodukt der Vektoren w und x. Wir nehmen auch wieder an,
dass uns eine Trainingsmenge S von Datenpunkten mit Labels (x1, y1), . . . , (xm, ym) gegeben
ist.

Wie wir in der letzten Vorlesung gesehen haben, können wir in Polynomialzeit eine Hypo-
these berechnen, die alle Datenpunkte in S korrekt klassifiziert, sofern dies möglich ist. Gleich-
zeitig gibt es unter der Annahme P 6= NP keinen Polynomialzeitalgorithmus, der die maximale
mögliche Anzahl von Punkten korrekt klassifiziert.

Beide Probleme werden wir heute erneut betrachten. Wir werden Probleme formulieren,
deren Ziel es ist eine

”
möglichst gute“ Hypothese zu berechnen, und die gleichzeitig Poly-

nomialzeitalgorithmen zulassen. Die Algorithmen selbst werden wir dann in den kommenden
Vorlesungen besprechen.

1 Hard-SVM-Problem

Das Ziel beim Hard-SVM-Problem ist es, eine Hypothese hw,u zu finden, die alle Datenpunkte
in S richtig klassifiziert unter der Annahme, dass das möglich ist. In anderen Worten sollen die
positiven von den negativen Punkten linear separierbar sein. Zusätzlich sollen die Datenpunkte
möglichst deutlich klassifiziert werden. Das bedeutet, dass der Abstand von der Hyperebene, die
durch w und u definiert wird, möglichst groß sein soll. Anders formuliert soll die Hypothese auch
noch möglichst lange korrekt bleiben, selbst wenn die Punkte in ihrer Umgebung verschoben
werden.

Leiten wir nun zunächst eine Formel für den Abstand von einer Hyperebene her. Zur Erinne-
rung: Der Abstand zweier Punkte v und v′ ist definiert als die Norm der Differenz der Vektoren
‖v − v′‖. Wir betrachten im Folgenden nur die euklidische Norm, definiert als ‖v‖ =

√
〈v,v〉.

Lemma 8.1. Der Abstand eines Punktes x von einer Hyperebene definiert durch (w, u) ist
1

‖w‖ |〈w,x〉 − u|.

Beweis. Wir definieren einen Punkt v = x − cw mit c = 1
‖w‖2 (〈w,x〉 − u). Nun werden wir

nachweisen, dass v (i) in der Hyperebene liegt, (ii) den besagten Abstand von x hat und (iii)
kein Punkt der Hyperebene näher an x liegt.

Für (i) setzen wir die Definition v ein und erhalten

〈w,v〉 = 〈w,x− cw〉 = 〈w,x〉 − c 〈w,w〉 = 〈w,x〉 − c‖w‖2 = u .

Also erfüllt v die Hyperebenegleichung.
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Für (ii) nutzen wir ebenfalls die Definition von v und elementare Umformungen. Dies gibt
uns

‖x− v‖ = ‖cw‖ = |c|‖w‖ =

∣∣∣∣
1

‖w‖2 (〈w,x〉 − u)

∣∣∣∣ ‖w‖ =
1

‖w‖ |〈w,x〉 − u| .

Für (iii) betrachten wir nun irgendeinen anderen Punkt v′ auf der Hyperebene. Das Quadrat
dessen Abstands zu x berechnet sich zu

‖x−v′‖2 = ‖x−v+v−v′‖2 = ‖x−v‖2+‖v−v′‖2+2
〈
x− v,v − v′〉 ≥ ‖x−v‖2+2

〈
x− v,v − v′〉 .

Es bleibt also nur zu zeigen, dass 〈x− v,v − v′〉 ≥ 0. Aufgrund der Definition von v ist x−v =
cw also

〈
x− v,v − v′〉 =

〈
cw,v − v′〉 = c

(
〈w,v〉 −

〈
w,v′〉) = c(−u+ u) = 0 .

Hierbei haben wir ausgenutzt, dass sowohl v als auch v′ auf der Hyperebene liegen.

Wir wollen nun eine Hyperebene finden, die alle Punkte (x1, y1), . . . , (xm, ym) korrekt klas-
sifiziert und außerdem unter diesen Hyperebenen den minimalen Abstand zu den Punkten ma-
ximiert. Dies können wir nun als ein Optimierungsproblem aufschreiben

maximiere min
i

1

‖w‖ |〈w,xi〉 − u|

unter den Nebenbedingungen 〈w,xi〉 − u ≥ 0 falls yi = 1

〈w,xi〉 − u < 0 falls yi = −1

Eine optimale Lösung zu dieser Formulierung zu finden ist nicht einfach. Die Nebenbedingungen
sind zwar linear, aber die Zielfunktion ist kompliziert. Deshalb schreiben wir das Problem leicht
um.

Zunächst einmal stellen wir fest, dass wir mittels der Nebenbedingungen die Betragsstriche
in der Zielfunktion eliminieren können. Egal ob yi = 1 oder yi = −1, gilt immer |〈w,xi〉 − u| =
yi(〈w,xi〉 − u). So lautet unser Problem nun

maximiere min
i

1

‖w‖yi(〈w,xi〉 − u)

unter den Nebenbedingungen 〈w,xi〉 − u ≥ 0 falls yi = 1

〈w,xi〉 − u < 0 falls yi = −1

Betrachten wir nun eine optimale Lösung (w, u), stellen wir fest, dass niemals 〈w,xi〉−u = 0
für ein i sein wird, weil wir ansonsten u leicht erhöhen könnten. Dies würde den Zielfunktionswert
nur verbessern und die Lösung würde weiter gültig bleiben. Außerdem erfüllt jede Lösung mit
positivem Zielfunktionswert automatisch alle Nebenbedingungen. Somit vereinfacht sich das
Problem dahingehend w und u zu finden, sodass

min
i

1

‖w‖yi(〈w,xi〉 − u)

maximiert wird.
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Gegeben eine optimale Lösung (w, u), sei nun γ = mini yi(〈w,xi〉−u). Betrachte w′ = 1
γw,

u′ = 1
γu. Wir stellen fest, dass

1

‖w′‖yi(
〈
w′,xi

〉
− u′) =

γ

‖w‖yi
(〈

w

γ
,xi

〉
− u

γ

)
=

1

‖w‖yi(〈w,xi〉 − u)

für alle i. Also hat (w′, u′) denselben Zielfunktionswert wie (w, u), ist also auch eine op-
timale Lösung. Wir können also genauso gut auch (w′, u′) suchen. Weil bei dieser Lösung
mini yi(〈w′,xi〉 − u′) = 1, ist dies gleichbedeutend mit

minimiere ‖w′‖2
unter den Nebenbedingungen yi(

〈
w′,xi

〉
− u′) ≥ 1 für alle i

Diese Formulierung heißt Hard-SVM. In der Tat werden wir Algorithmen kennenlernen, die
ein solches Optimierungsproblem lösen können.

2 Soft-SVM-Problem

Die Ergebnisse in Abschnitt 1 setzen voraus, dass die Punkte linear separierbar sind. Das heißt,
dass es eine Hypothese gibt, die alle Punkte in der Menge S korrekt klassifiziert. Um den Trai-
ningsfehler zu minimieren, müsste man eine Hypothese finden, die möglichst viele Datenpunkte
korrekt klassifiziert. In der Notation, die wir nun eingeführt haben, bedeutet dies, dass die Be-
dingung yi(〈w,xi〉+u) ≤ 1 für möglichst wenige i nicht erfüllt ist. Wie wir bereits in der letzten
Vorlesung gesehen haben, ist dies jedoch NP-schwer.

Der Soft-SVM -Ansatz ist daher ein anderer. Wir führen bei jeder Nebenbedingung eine
Variable ξ ein, wie weit sie verletzt ist. Das heißt, wir fordern nun noch, dass yi(〈w,xi〉 − u) ≤
1− ξi. Es ist nun auch das Ziel, den durchschnittlichen Fehler zu minimieren.

Die neue Formulierung lautet somit

minimiere λ‖w‖2 +
1

m

m∑

i=1

ξi

unter den Nebenbedingungen yi(〈w,xi〉 − u) ≥ 1− ξi für alle i

ξi ≥ 0 für alle i

Hierbei drückt λ ≥ 0 eine Gewichtung aus: ‖w‖2 ist der Term, der ursprünglich ausgedrückt
hat, dass der Abstand möglichst groß sein soll; 1

m

∑m
i=1 ξi ist der durchschnittliche Fehler, der

misst, wie weit Punkte jeweils auf der falschen Seite der Hyperebene sind.
Dieses Problem können wir noch umformulieren. Wir nutzen aus, dass in einer optimalen

Lösung immer ξi = max{0, 1− yi(〈w,xi〉 − u)} sein wird. Damit ist es äquivalent,

λ‖w‖2 +
1

m

m∑

i=1

max{0, 1− yi(〈w,xi〉 − u)}

zu minimieren.

3 Konvexe Optimierung

Das Hard-SVM- und das Soft-SVM-Problem lassen sich wie folgt darstellen. Wir möchten eine
Funktion f : S → R minimieren, wobei S ⊆ Rn die Menge aller zulässigen Lösungen darstellt.
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u

v

u
v

Abbildung 1: Links eine konvexe Menge, rechts eine nicht-konvexe Menge.

In unserem Fall enthält S alle (d + 1)-dimensionalen zulässigen Vektoren (w, u). Das heißt,
wir fügen unter die d Komponenten von w mit u einer weitere Komponente an. Im Fall von
Soft-SVM gibt es keine weiteren Einschränkungen, also ist S = Rn mit n = d+ 1. Im Fall von
Hard-SVM müssen mittels S die Nebenbedingungen berücksichtigen.

Glücklicherweise sind sowohl die Menge S als auch die Funktion f konvex. Deshalb werden
wir die Probleme mithilfe von Algorithmen aus der Konvexen Optimierung lösen können.

Die Menge S ist jeweils konvex. Das heißt, dass für zwei Punkte u,v ∈ S alle Punkte auf der
Verbindungslinie wieder in S enthalten ist (siehe Abbildung 1). Formal also λu + (1− λ)v ∈ S
für alle λ ∈ [0, 1].

Zusätzlich ist auch die Funktion f konvex. Das bedeutet, dass der Funktionsgraph zwischen
zwei Punkten jeweils unterhalb der Verbindungslinie dieser beiden Punkte liegt. Das heißt, für
u,v ∈ S gilt f(λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v) für alle λ ∈ [0, 1]. Ein typisches Beispiel
einer konvexen Funktion, das man immer im Kopf haben sollte, ist eine quadratische Funktion
in einer Dimension (siehe Abbildung 2 links).

Wenn die Funktionen differenzierbar sind, gibt es viele äquivalente Definitionen von Konve-
xität. Betrachten wir zunächst den eindimensionalen Fall. Hier muss beispielsweise die zweite
Ableitung nicht-negativ sein. Im Kontext von Konvexer Optimierung werden wir jedoch folgende
äquivalente Definition nutzen: Die Funktion fällt niemals unterhalb ihre Tangenten. Ausgedrückt
in der ersten Ableitung bedeutet dies, dass eine differenzierbare Funktion f : S → R konvex ist,
wenn für alle u, v ∈ S gilt

f(u) ≥ f(v) + f ′(v)(u− v) .

x

f(x)

−2 0
2

4−2

0
2

4
0

20

Abbildung 2: Typische konvexe Funktionen in einer bzw. zwei Dimensionen, jeweils mit einer
Tangente bzw. Tangentialhyperebene in rot.
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All diese Definitionen lassen sich auch ins Mehrdimensionale übertragen. Die Funktion f
hat nun einen Gradienten ∇f , der der Vektor aller partiellen Ableitungen ist; (∇f(u))i =
∂f
∂ui

(u). Eine differenzierbare Funktion f : S → Rn ist konvex, wenn sie niemals unter ihre
Tangentialhyperebene fällt (siehe Abbildung 2 rechts). Das heißt, dass für alle u,v

f(u) ≥ f(v) + 〈∇f(v), (u− v)〉 . (1)

Die Soft-SVM-Zielfunktion ist nicht differenzierbar. Trotzdem erfüllt sie eine ähnliche Be-
dingung, wie wir sehen werden.

Wir werden nicht nachweisen, dass die Hard- und Soft-SVM-Zielfunktionen konvex sind. Dies
folgt aus relativ einfachen Rechnungen. Folgende Abschlusseigenschaften sind dabei hilfreich.

Lemma 8.2. 1. Sind f und g konvex, dann sind auch f + g und max{f, g} konvex.

2. Ist f konvex und α ≥ 0, dann ist auch αf konvex.

3. Sind f und g konvex und g zusätzlich monoton steigend, dann ist auch g ◦ f konvex.
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Gradient Descent

Thomas Kesselheim Letzte Aktualisierung: 22. Mai 2020

In der letzten Vorlesung haben wir in Form von Hard- und dem Soft-SVM-Problem bereits
zwei konvexe Optimierungsprobleme kennengelernt. Im Maschinellen Lernen gibt es eine Viel-
zahl weiterer derartiger Probleme. Heute werden wir diskutieren, mit welchen algorithmischen
Ansätzen man sie lösen kann.

Allgemein ist ein konvexes Optimierungsproblem wie folgt definiert. Wir müssen eine kon-
vexe Funktion f : S → R minimieren, wobei S ⊆ Rn die (konvexe) Menge aller zulässigen
Lösungen darstellt. Wir beschränken uns auf den Fall, dass S = Rn. Das heißt, es gibt keine
Nebenbedingungen.

Zunächst beschränken wir uns auf differenzierbare Funktionen f . Später werden wir je-
doch unsere Ergebnisse verallgemeinern, dass sie auch mit nicht-differenzierbaren Funktionen
anwendbar sind.

1 Gradienten

Betrachten wir zunächst eine differenzierbare Funktion f . Folglich hat sie einen Gradienten ∇f ,
der der Vektor aller partiellen Ableitungen ist; (∇f(u))i = ∂f

∂ui
(u). Konvexität von f ist nun

äquivalent dazu, dass für alle u,v

f(u) ≥ f(v) + 〈∇f(v), (u− v)〉 . (1)

Zum Verständnis dieser Ungleichung ist es hilfreich zu verstehen, dass

u 7→ f(v) + 〈∇f(v), (u− v)〉

die lineare Approximation von f durch die Tangentialhyperebene an der Stelle v ist. Das heißt,
eine konvexe Funktion muss jeweils oberhalb der Tangentialhyperebene liegen.

−2
0

2
4−2

0

2

4
0

20

Abbildung 1: f : R2 → R mit f(x1, x2) = x21 + x22 und die Tangentialebene an (1, 1).



AGML, Sommersemester 2020 Vorlesung 9 (Seite 2 von 5)

Beispiel 9.1. In Abbildung 1 ist die Funktion f : R2 → R mit f(x1, x2) = x21 +x22 und die Tan-

gentialebene an f an (1, 1) dargestellt. Der Gradient ist ∇f(x1, x2) =

(
2x1
2x2

)
, entsprechend

ist die Tangentialebene an (1, 1) gegeben durch

u 7→ 2 + 2(u1 − 1) + 2(u2 − 1) .

Abbildung 2 zeigt eine andere Darstellung einer Funktion f : R2 → R als Relief-Plot. Hier
sehen wir Höhenlinien der Funktion eingetragen, also Mengen von Punkten, an denen die Funk-
tion denselben Wert hat. Der Gradient im Punkt x steht immer senkrecht zur Höhenlinie im
Punkt x der Funktion. Er zeigt in die Richtung des stärksten Anstiegs

−2
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Abbildung 2: Links ein 3D-Plot, rechts ein Relief-Plot mit Höhenlinien der konvexen Funktion
f : R2 → R definiert durch f(x1, x2) = (x1 − 1)2 + 3(x2 − 1)2.

2 Gradient Descent

Der Algorithmus Gradient Descent berechnet eine Folge von Lösungen w(1), . . . ,w(T ). Wir
beginnen mit w(1) = 0. Die Lösung w(t+1) ergibt sich jeweils aus einer leichten Verbesserung
von w(t).

Betrachten wir hierfür den Gradienten g(t) := ∇f(w(t)) von f an der Stelle w(t). Weil der
Gradient in die Richtung des stärksten Anstiegs zeigt, müssen wir uns in die entgegengesetzte
Richtung, also −g(t) bewegen, denn dies ist die Richtung des stärksten Abfalls. Dies führt zur
Regel

w(t+1) = w(t) − ηg(t) .

Dabei ist η (ausgesprochen: eta) ein Parameter des Algorithmus. Wenn wir η zu klein wählen,
machen wir keine guten Fortschritte. Wenn wir η zu groß wählen, schießen wir möglicherweise
über das Ziel hinaus.

Nach einer festen Anzahl von Iterationen T geben wir die beste gesehene Lösung zurück.1

1Alternative Formulierungen des Algorithmus geben einen Durchschnitt über alle Lösungen oder die letzte
erreichte Lösung zurück.



AGML, Sommersemester 2020 Vorlesung 9 (Seite 3 von 5)

10
10

8
8

6
6

6

4

4

4 4

3

3

3

3 3

2

2

2

2

1

1

1

1

0.5

0
.50.
1

−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

5050

40
40

30
30

20
20

20

10

10

10

10

5

5

5

3 3

3

1

1

−3 −2 −1 0 1 2 3

−2

0

2

Abbildung 3: Beispiel von Gradient Descent auf f(x1, x2) = (x1 − 1)2 + 3(x2 − 1)2, links mit
η = 0.3 mit Konvergenz, rechts mit η = 0.4 ohne Konvergenz.

3 Analyse von Gradient Descent

Wir können nun zeigen, dass der Algorithmus sich tatsächlich einer optimale Lösung annähert.

Satz 9.2. Gilt ‖g(t)‖ ≤ ρ für alle t, dann gilt für alle w∗ ∈ Rn mit ‖w∗‖ ≤ B

min
t
f(w(t)) ≤ f(w∗) +

B2

2ηT
+
ηρ2

2
.

Insbesondere gilt für η = B
ρ
√
T

min
t
f(w(t)) ≤ f(w∗) +

Bρ√
T

.

Insbesondere können wir natürlich w∗ als die optimale Lösung wählen und erhalten damit
einen additiven Fehler von höchstens Bρ√

T
unter den genannten Bedingungen. Wichtig ist an

dieser Stelle, dass der Fehler immer kleiner wird je größer T , also die Anzahl der Iterationen,
wird. Die Bedeutungen von B und ρ werden wir später noch diskutieren.

Beweis. Den besten gesehenen Funktionswert können wir abschätzen durch den durchschnittlich
gesehenen Funktionswert

min
t

(
f(w(t))− f(w∗)

)
≤ 1

T

T∑

t=1

(
f(w(t))− f(w∗)

)
. (2)

Nun folgt der einzige Schritt, in dem wir Konvexität nutzen. Gemäß dieser gilt für alle t

f(w∗) ≥ f(w(t)) +
〈
g(t),w∗ −w(t)

〉
. (3)

Also gilt

f(w(t))− f(w∗) ≤
〈
g(t),w(t) −w∗

〉
.

Dieses Skalarprodukt drücken wir nun in einer Summe von Vektornormen aus. Es gilt
nämlich für alle u,v, dass

〈u + v,u + v〉 = ‖u + v‖2 ,
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aber auch

〈u + v,u + v〉 = 〈u,u〉+ 〈v,u〉+ 〈u,v〉+ 〈v,v〉 = ‖u‖2 + ‖v‖2 + 2 〈u,v〉 .

Zusammengenommen also

〈u,v〉 =
1

2

(
‖u + v‖2 − ‖u‖2 − ‖v‖2

)
.

Mittels der Gleichung können wir nun schreiben

〈
w(t) −w∗,−ηg(t)

〉
=

1

2

(
‖w(t) −w∗ − ηg(t)‖2 − ‖w(t) −w∗‖2 − ‖−ηg(t)‖2

)
.

Wir können nun w(t+1) = w(t) − ηg(t) einsetzen. Zusätzlich teilen wir die Gleichung durch −η.
Somit ergibt sich

〈
g(t),w(t) −w∗

〉
= −1

η

〈
w(t) −w∗,−ηg(t)

〉

= − 1

2η

(
‖w(t+1) −w∗‖2 − ‖w(t) −w∗‖2 − ‖−ηg(t)‖2

)

=
1

2η

(
‖w(t) −w∗‖2 − ‖w(t+1) −w∗‖2

)
+
η

2
‖g(t)‖2 .

Als Teleskopsumme ergibt sich damit für (2) zusammen mit (3)

T∑

t=1

(
f(w(t))− f(w∗)

)
≤ 1

2η

T∑

t=1

(
‖w(t) −w∗‖2 − ‖w(t+1) −w∗‖2

)
+
η

2

T∑

t=1

‖g(t)‖2

=
1

2η

(
‖w(1) −w∗‖2 − ‖w(T+1) −w∗‖2

)
+
η

2

T∑

t=1

‖g(t)‖2 .

Mit w(1) = 0 und ‖w(T+1) −w∗‖2 ≥ 0 können wir also abschätzen

T∑

t=1

(
f(w(t))− f(w∗)

)
≤ 1

2η
‖w∗‖2 +

η

2

T∑

t=1

‖g(t)‖2 .

Insgesamt erhalten wir damit

min
t

(
f(w(t))− f(w∗)

)
≤ B2

2ηT
+
ηρ2

2
.

Und mit η = B
ρ
√
T

gilt nun mint
(
f(w(t))− f(w∗)

)
≤ Bρ√

T
.

4 Nicht-Differenzierbare Funktionen

Ist eine Funktion nicht differenzierbar, so gibt es nicht an jeder Stelle v einen Gradienten
∇f(v). Somit ist auch die Tangentialhyperebene nicht (eindeutig) definiert. In Abbildung 4
ist die Betragsfunktion dargestellt. An der Stelle 0 ist sie nicht differenzierbar. Es gibt nun
eine Vielzahl von Tangenten, die wir an dieser Stelle anlegen können. Die Abbildung zeigt zwei
Beispiele.
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x

f(x)

Abbildung 4: Die Betragsfunktion mit zwei möglichen Tangenten an der Stelle 0. Die Funktion
liegt oberhalb von allen diesen Tangenten.

Wir erinnern uns, das Konvexität bei differenzierbaren Funktionen f äquivalent dazu ist,
dass für alle u,v

f(u) ≥ f(v) + 〈∇f(v), (u− v)〉 .
Diese Ungleichung haben wir für die Analyse von Gradient Descent genutzt.

Für allgemeine, nicht notwendigerweise differenzierbare Funktionen gibt es glücklicherweise
folgende Verallgemeinerung: Eine Funktion f ist konvex, wenn es für alle v ein g gibt, sodass
für alle u gilt

f(u) ≥ f(v) + 〈g, (u− v)〉 . (4)

Wenn f in v differenzierbar ist, dann ist tatsächlich g = ∇f(v) die einzige Wahl, die diese Un-
gleichung erfüllt. Ist f in v nicht differenzierbar, gibt es möglicherweise mehrere Möglichkeiten,
g zu wählen.

Definition 9.3. Für eine Funktion f : S → R und v ∈ S nennen wir

∂f(v) = {g | f(u) ≥ f(v) + 〈g, (u− v)〉 für alle u ∈ S}

das Subdifferenzial von f in v. Die Elemente von ∂f(v) heißen Subgradienten.

Eine Funktion f ist also genau dann konvex, wenn ∂f(v) 6= ∅ für alle v. Dies liegt daran,
dass Wahlen für g in Ungleichung (4) genau den Elementen aus ∂f(v) entsprechen.

5 Subgradient Descent

Der Algorithmus Subgradient Descent funktioniert genauso wie Gradient Descent. Der einzige
Unterschied ist die Wahl von g(t). Galt bisher die Regel, dass g(t) auf ∇f(w(t)) gesetzt wurde,
ist nun g(t) ∈ ∂f(w(t)) beliebig. Das heißt, dass wir anstatt des Gradienten nun einen beliebigen
Subgradienten verwenden. Für differenzierbare Funktionen ändert sich damit nichts.

Satz 9.2 und sein Beweis gelten weiterhin. Lediglich in Ungleichung (3) haben wir die Defi-
nition von g(t) genutzt. Diese Ungleichung entspricht jedoch genau der Definition des Subgra-
dienten.

Referenzen

• Understanding Machine Learning, Kapitel 14.1–14.2
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Stochastic Gradient Descent

Thomas Kesselheim Letzte Aktualisierung: 26. Mai 2020

Wir betrachten heute wie der Gradient-Descent-Algorithmus auf dem Soft-SVM-Problem
abläuft. Wir werden in diesem Zusammenhang eine Verallgemeinerung des Algorithmus namens
Stochastic Gradient Descent kennenlernen, die schnellere Laufzeiten ermöglicht.

1 Soft-SVM: Wiederholung und neue Notation

Wir erinnern uns, dass uns beim Soft-SVM-Problem eine Menge S von Datenpunkten mit Labels
z1 = (x1, y1), . . . , zm = (xm, ym) gegeben ist, wobei xi ∈ Rd und yi ∈ {−1,+1} für alle i. Das
Ziel ist es nun w ∈ Rd und u ∈ R zu finden, so dass

λ‖w‖2 +
1

m

m∑

i=1

max{0, 1− yi(〈w,xi〉 − u)}

minimiert wird, wobei λ ein Parameter ist. Um die Notation einfach zu halten, fordern wir im
Folgenden u = 0. Dies ist mehr oder weniger ohne Beschränkung der Allgemeinheit, wenn wir
u als die d + 1-te Komponente von w interpretieren und an alle xi als letzte Komponente 1
anfügen. Zu einem anderen Zeitpunkt werden wir diese Anspekte noch genauer diskutieren.

Führen wir an dieser Stelle etwas Notation ein. Definiere nun

`hinge(hw, zi) = max{0, 1− yi〈w,xi〉} ,

das ausdrückt,
”
wie falsch“ die Hypothese hw auf dem i-ten Datenpunkt zi = (xi, yi) ist. Diese

Funktion nennt sich Hinge Loss. Der Name bezieht sich darauf, dass der Funktionsgraph aussieht
wie ein Türscharnier (siehe Abbildung 1). Der durchschnittliche Loss auf S ist nun

Lhinge
S (hw) =

1

m

m∑

i=1

`hinge(hw, zi) .

Wir müssen also w ∈ Rd finden, sodass f(w) := R(w) + Lhinge
S (hw) minimiert wird, wobei

R(w) = λ‖w‖2. Auf die Bedeutung von R(w) werden wir in einer späteren Vorlesung eingehen.

yi〈w,xi〉

`hinge

Abbildung 1: Die Hinge-Loss-Funktion.
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2 Gradient Descent für Soft-SVM

Diese Funktion f ist konvex. Wir können also Gradient Descent nutzen, um sie zu minimieren.
Genauer gesagt müssen wir Subgradient Descent nutzen, denn sie ist nicht überall differenzier-
bar.

Betrachten wir der Einfachheit halber eine Stelle w, an der sie differenzierbar ist. Der Gra-
dient ist der Vektor aller partiellen Ableitungen. Die partielle Ableitung nach wj können wir
mittels der üblichen Rechenregeln berechnen

∂

∂wj
f(w) =

∂

∂wj
R(w) +

∂

∂wj
Lhinge
S (hw) =

∂

∂wj
R(w) +

1

m

m∑

i=1

∂

∂wj
`hinge(hw, zi) . (1)

Weiterhin gelten

∂

∂wj
R(w) = 2λwj und

∂

∂wj
`hinge(hw, zi) =

{
−yixi,j falls 1− yi〈w,xi〉 > 0

0 falls 1− yi〈w,xi〉 < 0

Also gilt insgesamt

∇f(w) = 2λw − 1

m

∑

i:1−yi〈w,xi〉>0

yixi .

Wenn wir dies also in die Iterationsvorschrift von Gradient Descent w(t+1) = w(t) − η∇f(w(t))
einsetzen, ergibt sich

w(t+1) = w(t) − η


2λw(t) − 1

m

∑

i:1−yi〈w(t),xi〉>0

yixi


 = (1− 2ηλ)w(t) +

η

m

∑

i:1−yi〈w,xi〉>0

yixi .

Der Algorithmus ist so also überraschend einfach. Hinsichtlich der Laufzeit einer einzelnen
Iteration stellen wir fest, dass diese durch die Berechnung des Gradienten dominiert wird. Pro
Dimension benötigen wir lineare Zeit in der Anzahl Samples m, insgesamt also Θ(dm). Das
Problem hierbei ist, dass m typischerweise sehr groß sein sollte, denn die Stärke des Maschinellen
Lernens liegt genau darin, aus der großen Menge an verfügbaren Daten Schlüsse zu ziehen.

3 Stochastic (Sub-) Gradient Descent

Die aufwändige Berechnung des Gradienten können wir wie folgt umgehen. Wie wir in Glei-
chung (1) sehen, ergibt sich die partielle Ableitung der Funktion f aus dem Durchschnitt der
partiellen Ableitungen der Loss-Funktionen der einzelnen Datenpunkte. Diese Durchschnitt er-
setzen wir nun durch ein Zufallsexperiment: Wir ziehen einen einzelnen Datenpunkt zi und
betrachten nur die partielle Ableitung, die sich für diesen einzelnen Punkt ergibt. Im Erwar-
tungswert ergibt sich damit genau die gewünschte partielle Ableitung und damit auch Richtung
für Gradient Descent.

Allgemeiner funktioniert der Algorithmus Stochastic Gradient Descent für eine beliebige
konvexe Funktion f wie folgt. Wir beginnen wieder mit w(1) = 0. In Schritt t bestimmen wir
w(t+1) aus w(t) wie folgt.

• Ziehe einen Vektor g(t) aus irgendeiner Wahrscheinlichkeitsverteilung, sodass E
[
g(t)

∣∣ w(t)
]
∈

∂f(w(t)).1

• Setze w(t+1) = w(t) − ηg(t).
1Diese Notation bedeutet, dass der bedingte Erwartungswert betrachtet wird. Der Vektor w(t) wird also

festgehalten und nun wird ein weiteres Zufallsexperiment durchgeführt, das von w(t) abhängt.
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4 Stochastic Subgradient Descent angewendet auf Soft-SVM

Im Fall von Soft-SVM hatten wir ja für Gradient Descent

g(t) = ∇R(w(t)) +
1

m

m∑

i=1

∇`hinge(hw(t) , zi)

gesetzt. Nun ziehen wir in jedem Schritt t ein It unabhängig, identisch verteilt aus {1, . . . ,m}
und setzen

g(t) = ∇R(w(t)) +∇`hinge(hw(t) , zIt) = 2λw(t) +

{
−yItxIt falls 1− yIt〈w(t),xIt〉 > 0

0 sonst
. (2)

Anders formuliert erhalten wir

w(t+1) =

{
(1− ηλ)w(t) + ηyixi falls 1− yi〈w,xi〉 > 0

(1− ηλ)w(t) sonst
.

Nun gilt

E
[
g(t)

∣∣∣ w(t)
]

=
m∑

i=1

Pr [It = i]
(
∇R(w(t)) +∇`hinge(hw(t) , zi)

)
= ∇R(w(t))+

1

m

m∑

i=1

∇`hinge(hw(t) , zi) .

Der bedingte Erwartungswert von g(t) ist somit also genau der Gradient, den Gradient Descent
nutzen würde.

5 Analyse von Stochastic (Sub-) Gradient Descent

Die allgemeine Formulierung von Stochastic (Sub-) Gradient Descent fordert nur E
[
g(t)

∣∣ w(t)
]
∈

∂f(w(t)). Eine Möglichkeit wäre es also auch, den Vektor g(t) deterministisch zu bestimmen als
einen Subgradienten von f . Genau dies macht der Algorithmus Gradient Descent bzw. Subgra-
dient Descent. Stochastic (Sub-) Gradient Descent ist also eine Verallgemeinerung. Trotzdem
können wir genau dieselbe Garantie herleiten.

Satz 10.1. Gilt ‖g(t)‖ ≤ ρ für alle t mit Wahrscheinlichkeit 1, dann gilt für alle w∗ ∈ Rn mit
‖w∗‖ ≤ B

E
[
min
t
f(w(t))

]
≤ f(w∗) +

B2

2ηT
+
ηρ2

2
.

Insbesondere gilt für η = B
ρ
√
T

E
[
min
t
f(w(t))

]
≤ f(w∗) +

Bρ√
T

.

Wir erhalten also im Wesentlichen die gleiche Garantie wie bei Gradient Descent mit dem
Unterschied, dass sie nur im Erwartungswert gilt. Das folgende Lemma fasst die wesentliche
Änderung im Argument zusammen.

Lemma 10.2. Bei Stochastic (Sub-) Gradient Descent gilt für alle t

E
[
f(w(t))− f(w∗)

]
≤ E

[〈
g(t),w(t) −w∗

〉]
.
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Beweis. Betrachten wir Schritt t und halten wir die Zufallsereignisse, die bis hier geschehen
sind fest. Mathematisch formuliert, betrachten wir also den bedingten Wahrscheinlichkeitsraum
für ein festes w(t). Sei nun ḡ = E

[
g(t)

∣∣ w(t)
]
. Gemäß unserer Annahme gilt ḡ ∈ ∂f(w(t)). Das

heißt insbesondere
f(w∗) ≥ f(w(t)) +

〈
ḡ,w∗ −w(t)

〉

und somit
f(w(t))− f(w∗) ≤

〈
ḡ,w(t) −w∗

〉
.

Nun ist ḡi = E
[
g
(t)
i

∣∣∣ w(t)
]
, also gilt wegen Linearität des Erwartungswerts

〈
ḡ,w(t) −w∗

〉
=

n∑

i=1

ḡi(w
(t) −w∗)i

=
n∑

i=1

E
[
g
(t)
i

∣∣∣ w(t)
]

(w(t) −w∗)i

= E

[
n∑

i=1

g
(t)
i (w(t) −w∗)i

∣∣∣∣∣ w
(t)

]

= E
[〈

g(t),w(t) −w∗
〉 ∣∣∣ w(t)

]
.

Damit gilt für jedes w(t), egal wie wir es erreicht haben

f(w(t))− f(w∗) ≤ E
[〈

g(t),w(t) −w∗
〉 ∣∣∣ w(t)

]
.

Um nun die Rechnung unkompliziert formal korrekt zu halten, nehmen wir an, dass w(t) nur
endlich viele Werte v1, . . . ,vk und g(t) nur endlich viele Werte g1, . . . ,g` annehmen kann. Dann
gilt für den unbedingten Erwartungswert

E
[
f(w(t))− f(w∗)

]
=

k∑

i=1

Pr
[
w(t) = vi

]
(f(vi)− f(w∗))

≤
k∑

i=1

Pr
[
w(t) = vi

]
E
[〈

g(t),w(t) −w∗
〉 ∣∣∣ w(t) = vi

]

=

k∑

i=1

Pr
[
w(t) = vj

]∑̀

j=1

Pr
[
g(t) = gj

∣∣∣ w(t) = vi

]
〈gj ,vi −w∗〉

=

k∑

i=1

∑̀

j=1

Pr
[
w(t) = vj ,g

(t) = gj

]
〈gj ,vi −w∗〉

= E
[〈

g(t),w(t) −w∗
〉]

.

Diese Rechnung gilt auch allgemeiner. Dafür müssten wir allerdings den bedingten Erwartungs-
wert formaler definieren, was über die Inhalte der Vorlesung hinausgeht.

Nun können wir den Algorithmus im Wesentlichen wie Gradient Descent analysieren. Wir
müssen lediglich des öfteren Gebrauch davon machen, dass der Erwartungswert linear ist.
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Beweis von Satz 10.1. In der Analyse von Gradient Descent haben wir gezeigt, dass für all u,v
gilt

〈u,v〉 =
1

2

(
‖u + v‖2 − ‖u‖2 − ‖v‖2

)
.

Diese Gleichung haben wir wie folgt genutzt, um
〈
g(t),w(t) −w∗

〉
umzuschreiben. Dabei ist es

unerheblich, wie g(t) definiert ist. Wir nutzen lediglich w(t+1) = w(t) − ηg(t).

〈
g(t),w(t) −w∗

〉
= −1

η

〈
w(t) −w∗,−ηg(t)

〉

= − 1

2η

(
‖w(t+1) −w∗‖2 − ‖w(t) −w∗‖2 − ‖−ηg(t)‖2

)

=
1

2η

(
‖w(t) −w∗‖2 − ‖w(t+1) −w∗‖2

)
+
η

2
‖g(t)‖2 .

Ebenfalls erhalten wir über die Teleskopsumme und w(1) = 0 und ‖w(T+1) −w∗‖2 ≥ 0 wieder

T∑

t=1

〈
g(t),w(t) −w∗

〉
=

1

2η

T∑

t=1

(
‖w(t) −w∗‖2 − ‖w(t+1) −w∗‖2

)
+
η

2
‖g(t)‖2

≤ 1

2η
‖w∗‖2 +

η

2

T∑

t=1

‖g(t)‖2 .

Nun können wir diese Gleichung mit Lemma 10.2 kombinieren. Aufgrund der Linearität des
Erwartungswertes erhalten wir

E

[
T∑

t=1

(
f(w(t))− f(w∗)

)]
=

T∑

t=1

E
[(
f(w(t))− f(w∗)

)]

≤
T∑

t=1

E
[〈

g(t),w(t) −w∗
〉]

= E

[
T∑

t=1

〈
g(t),w(t) −w∗

〉]

≤ E

[
1

2η
‖w∗‖2 +

η

2

T∑

t=1

‖g(t)‖2
]

=
1

2η
‖w∗‖2 +

η

2

T∑

t=1

E
[
‖g(t)‖2

]
.

Weil ‖w∗‖2 ≤ B2 und E
[
‖g(t)‖2

]
≤ ρ2 gemäß Annahme, folgt der Satz.

6 Norm des Subgradienten

Die Garantie in Satz 10.1 hängt von ρ ab, wobei wir fordern, dass ‖g(t)‖ ≤ ρ für alle t mit
Wahrscheinlichkeit 1. Wie können wir diese Werte im Fall von Soft-SVM beschränken?

Betrachten wir Gleichung (2), können wir g(t) schreiben als g(t) = 2λw(t) + v(t), wobei

v(t) =

{
−yItxIt falls 1− yIt〈w,xIt〉 > 0

0 sonst
.
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Wir können also mittels der Dreiecksungleichung abschätzen

‖g(t)‖ ≤ 2λ‖w(t)‖+ ‖v(t)‖ ≤ 2λ‖w(t)‖+ max
i
‖xi‖ .

Entscheidend ist also, wie groß ‖w(t)‖ werden kann. Dies ergibt sich aus dem bisherigen Verlauf
des Algorithmus. Hierfür können wir g(t−1), . . . ,g(1) einsetzen und erhalten

w(t) = w(t−1)−η
(

2λw(t−1) + v(t−1)
)

= (1− 2ηλ)w(t−1)−ηv(t−1) = . . . =

t−1∑

i=1

(1− 2ηλ)t−1−i ηv(i) .

Nun erhalten wir mittels Dreiecksungleichung und geometrischer Summenformel

‖w(t)‖ ≤
t−1∑

i=1

(1− 2ηλ)t−1−i η‖v(i)‖ ≤
∞∑

i=0

(1− 2ηλ)i ηmax
i
‖xi‖ =

1

2ηλ
ηmax

i
‖xi‖ =

1

2λ
max
i
‖xi‖ .

In die obige Schranke auf ‖g(t)‖ eingesetzt, bekommen wir also

‖g(t)‖ ≤ 2 max
i
‖xi‖ .

Referenzen

• Understanding Machine Learning, Kapitel 14.3 und 14.5
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Kernel-Funktionen

Thomas Kesselheim Letzte Aktualisierung: 29. Mai 2020

In vielen Fällen kann man mittels linearer Klassifikation keine genügend guten Vorhersagen
treffen. Wir werden uns heute komplexere Klassifikatoren anschauen. Die zugrundeliegenden
Optimierungsprobleme können wir allerdings auf lineare Klassifikation zurückführen.

Beispiel 11.1. Uns seien folgende Trainingsdaten gegeben:
xi yi
−2 −1
−1 −1
1 +1
2 +1
3 −1

Hier ist lineare Klassifikation, also die Wahl einer Schwellenwertfunktion, offensichtlich
keine sonderlich gute Idee. Es ist relativ offensichtlich, dass eigentlich ein Intervall gesucht
wird. Interessant ist, dass ein Algorithmus dieses Intervall auch mittels linearer Klassikation
finden kann, wenn wir als Merkmale (xi, x

2
i ) ∈ R2 ansehen.

(xi, x
2
i ) yi

(−2, 4) −1
(−1, 1) −1
(1, 1) +1
(2, 4) +1
(3, 9) −1 x

x2

Durch Hinzunahme einer Dimension gibt es nun also eine Gerade, die die Punkte separiert.

1 Einbettungen und Feature Space

Anstatt lineare Klassifikation über dem Merkmalsraum X betrachten wir diese nun über einem
Feature Space F ; zunächst ist F = Rn, wobei n ∈ N unterschiedliche groß sein kann. Dazu ist
uns eine Einbettung ψ : X → F gegeben.

Beispiel 11.2. • Im oben Beispiel ist X = R, F = R2, ψ(x) = (x, x2).

• Eine Einbettung, über die wir schon implizit gesprochen haben, ist die folgende. Ist X =
Rd, können wir F = Rd+1 und ψ(x) = (x, 1) betrachten. Das heißt, wir fügen jedem x-
Vektor als letzte Komponente eine 1 an. Jetzt können wir uns auf lineare Klassifikation
mittels Hyperebenen beschränken, die durch den Ursprung gehen.

• Allgemeiner können wir polynomielle Einbettungen betrachten. Sei dafür X = Rd und
k ∈ N fest. Nun definieren wir ψ(x) als den Vektor, dessen Komponenten alle möglichen
Formen

∏d
i=1 x

ji
i = xj11 · xj22 · . . . · xjdd mit 0 ≤ ji ≤ k für alle i hat. Die Dimension von F

ist n = (k + 1)d, kann also leicht sehr groß werden. Konkret können wir d = 2 und k = 2
anschauen, dann ist ψ(x1, x2) = (1, x1, x

2
1, x2, x1x2, x

2
1x2, x

2
2, x1x

2
2, x

2
1x

2
2).
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• Es könnte aber auch X die Menge aller E-Mails sein und F könnte ein Vektor irgendwel-
cher Eigenschaften sein, beispielsweise wie oft das gewisse Wörter vorkommen.

Der Lernalgorithmus, der eine Einbettung ψ benutzt, könnte also wie folgt aussehen:

1. Berechne die Einbettung der Trainingsdaten. Sei die eingebettete Trainingsmenge Ŝ ent-
sprechend definiert als (ψ(x1), y1), . . . , (ψ(xm), ym).

2. Finde einen möglichst guten linearen Klassifikator hw : F → {−1,+1}, mit Trainingsmen-
ge Ŝ.

3. Gib Hypothese h : X → {−1,+1} zurück mit

h(x) =

{
+1 falls 〈w, ψ(x)〉 ≥ 0

−1 sonst
.

Im zweiten Schritt könnten wir beispielsweise das Hard- oder das Soft-SVM-Problem auf F mit
Trainingsmenge Ŝ lösen.

Je nachdem, wie ψ gewählt wird, also welche Features dem Algorithmus zur Verfügung
stehen, werden die Ergebnisse besser oder schlechter. Deren Auswahl hängt von der Anwendung
ab. Hier steckt ein bisschen die Kunst des Maschinellen Lernens.

2 Repräsentationssatz

Ob der Algorithmus, der die Einbettung nutzt, eine sinnvolle Laufzeit hat, hängt maßgeblich von
der Dimension n des Feature Space ab. Diese kann jedoch sehr hoch sein, wie beispielsweise bei
der oben genannten polynomiellen Einbettung. Wir werden nun einen Satz zeigen, mit dessen
Hilfe sich die Laufzeit jedoch drastisch reduzieren lässt.

Dafür nehmen wir an, dass wir im zweiten Schritt einen Vektor w ∈ Rn suchen, der eine
Funktion f : Rn → R minimiert, die die Form

f(w) = f1(‖w‖) + f2(〈w, ψ(x1)〉, . . . , 〈w, ψ(xm)〉) (1)

hat, wobei f1 : R→ R monoton steigend und f2 : Rm → R eine beliebige Funktion ist. Wichtig
ist, dass beide Funktionen nur in einer sehr eingeschränkten Art von w abhängen. Die erste
hängt lediglich von der Norm von w ab, die zweite lediglich von den Skalarprodukten von w
mit x1, . . . ,xm.

Alle Arten zur linearen Klassifikation, die wir bislang kennengelernt haben, lassen sich so
darstellen.

• Bei Soft-SVM ist dies relativ offensichtlich. Hier könnten wir

f1(a) = λa2, f2(a1, . . . , am) =
1

m

m∑

i=1

max{0, 1− yiai}

wählen.

• Um Hard-SVM zu erfassen, nutzen wir

f1(a) = a2, f2(a1, . . . , am) =

{
0 falls yiai ≥ 1 für alle i

∞ sonst
.

Die Funktion f2 bringt also in diesem Fall die Nebenbedingungen zum Ausdruck.
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• Auch die Zielfunktion, die Anzahl falsch klassifizierter Punkte lässt sich in dieser Form
schreiben. Hier ist f1(a) = 0 für alle a und f2(a1, . . . , am) = |{i | yiai ≤ 0}|.

Satz 11.3. Für jede Auswahl von Datenpunkten x1, . . . ,xm ∈ X, Einbettungsfunktion ψ : X →
F , und jede Funktion f der Form wie in Gleichung (1) gibt es α1, . . . , αm, sodass der Vektor
w′ =

∑m
i=1 αiψ(xi) die Funktion f minimiert.

Das heißt, dass es um f zu minimieren ausreicht, nur die Linearkombinationen von ψ(x1), . . . ψ(xm)
zu betrachten.

Beweis von Satz 11.3. Sei w∗ ∈ F eine optimale Lösung des Optimierungsproblems. Die Vek-
toren ψ(x1), . . . , ψ(xm) erzeugen eine Unterraum U von F von Dimension höchstens m. Wir
betrachten nun eine Orthonormalbasis b1, . . . ,bk dieses Unterraums U . (Diese könnte man bei-
spielsweise mit dem Gram-Schmidtschen Orthogonalisierungsverfahren bestimmen.) Das heißt
〈bj ,bj〉 = 1 und 〈bj ,bj′〉 = 0 für j 6= j′. Außerdem lässt sich jedes ψ(xi) als Linearkombination
von b1, . . . ,bk darstellen. Weil es sich um eine Orthonomalbasis handelt, ist dies besonders
einfach. Es gilt

ψ(xi) =
k∑

j=1

〈ψ(xi),bj〉bj .

Nun betrachten wir die Projektion von w∗ auf U . Diese berechnet sich in ähnlicher Weise
als

w′ =
k∑

j=1

〈w∗,bj〉bj .

Es gilt w′ ∈ U , denn U umfasst ja genau alle Linearkombinationen von b1, . . . ,bk. Wir können
w′ aber auch als Linearkombination von ψ(x1), . . . , ψ(xm) schreiben, denn auch diese Vektoren
erzeugen U . Das heißt, es gibt α1, . . . , αm ∈ R mit

w′ =
m∑

i=1

αiψ(xi) .

Wir behaupten nun, dass f(w′) ≤ f(w∗). Betrachten wir zunächst das Skalarprodukt von
w′ mit einem beliebigen bj′ . Es gilt

〈w′,bj′〉 =

〈
k∑

j=1

〈w∗,bj〉bj ,bj′

〉
=

k∑

j=1

〈w∗,bj〉 · 〈bj ,bj′〉 = 〈w∗,bj′〉 .

Somit gilt also auch

〈w′, ψ(xi)〉 =

〈
w′,

k∑

j=1

〈ψ(xi),bj〉bj

〉
=

k∑

j=1

〈ψ(xi),bj〉·〈w′,bj〉 =
k∑

j=1

〈ψ(xi),bj〉·〈w∗,bj〉 = 〈w∗, ψ(xi)〉 .

Das heißt, dass f2(〈w′, ψ(x1)〉, . . . , 〈w′, ψ(xm)〉) = f2(〈w∗, ψ(x1)〉, . . . , 〈w∗, ψ(xm)〉).
Eine analoge Rechnung liefert uns 〈w′,w′〉 = 〈w∗,w′〉. Definieren wir uns also c = w∗−w′,

stellen wir fest, dass 〈w′, c〉 = 〈w′,w∗〉 − 〈w′,w′〉 = 0. Somit gilt auch, dass

‖w∗‖2 = 〈w′ + c,w′ + c〉 = 〈w′,w′〉+ 〈c, c〉 = ‖w′‖2 + ‖c‖2 .

Dies bedeutet also auch, dass ‖w′‖ ≤ ‖w∗‖ und damit f1(‖w′‖) ≤ f1(‖w∗‖) aufgrund der
Monotonie.

Insgesamt gilt also f(w′) ≤ f(w∗).

Aufgrund von Satz 11.3 können wir uns also darauf beschränken α ∈ Rm zu finden anstatt
w ∈ Rn. Dies ist von enormem Nutzen, wenn n� m.
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3 Effiziente Berechnung

Wie finden wir also einen Vektor α ∈ Rm, so dass f (
∑m

i=1 αiψ(xi)) minimiert wird? Weiterhin
hat f die Form aus Gleichung (1). Das heißt, f hängt nur von der Norm und den Skalarprodukten
ab. Diese können wir auch direkt durch α ausdrücken. Gilt nämlich w =

∑m
i=1 αiψ(xi), dann

auch

〈w, ψ(xj)〉 =

〈
m∑

i=1

αiψ(xi), ψ(xj)

〉
=

m∑

i=1

αi 〈ψ(xi), ψ(xj)〉

und

‖w‖ =
√
〈w,w〉 =

√√√√
〈

m∑

i=1

αiψ(xi),
m∑

j=1

αjψ(xj)

〉
=

√√√√
m∑

i=1

m∑

j=1

αiαj 〈ψ(xi), ψ(xj)〉 .

Definieren wir uns also eine neue Funktion K : X × X → R über K(xi,xj) = 〈ψ(xi), ψ(xj)〉,
dann lassen sich diese Ausdrücke schreiben als

〈w, ψ(xj)〉 =

m∑

i=1

αiK(xi,xj)

und

‖w‖ =

√√√√
m∑

i=1

m∑

j=1

αiαjK(xi,xj) .

Somit gilt also

f

(
m∑

i=1

αiψ(xi)

)
= f1



√√√√

m∑

i=1

m∑

j=1

αiαjK(xi,xj)


+f2

(
m∑

i=1

αiK(xi,x1), . . . ,
m∑

i=1

αiK(xi,xm)

)
.

Insgesamt müssten wir also, um f zu berechnen und auch zu minimieren, lediglich K(xi,xj)
für alle Paare i und j ausrechnen. Die einzelnen Werte von ψ(xi) sind nicht gar nicht erforderlich.
Das heißt, wir rechnen nicht einmal m2 anstatt m · n Werte aus. Für große n kann dies ein
enormer Vorteil sein.

Beispiel 11.4. Betrachten wir wieder die polynomielle Einbettung des X = Rd. Relativ einfa-
ches Nachrechnen ergibt, dass K(xi,xj) = (1 + 〈xi,xj〉)k. Das heißt, diese Werte lassen sich
relativ leicht ausrechnen. Eine Bestimmung der m Vektoren ψ(x1), . . . , ψ(xm) mit je (k + 1)d

Einträgen ist nicht erforderlich.

4 Kernels

Wie wir gesehen haben, ist es also nur nötig, die Funktion K : X ×X → R auszurechnen. Eine
solche Funktion nennt sich Kernel. Sie ersetzt gewissermaßen das Skalarprodukt auf X.

In der Tat ist es nicht einmal erforderlich, dass der Feature Space F eine endliche Dimension
hat, denn die Funktion ψ : X → F muss nicht explizit ausgewertet werden. Der Raum F muss
lediglich ein reeller Vektorraum sein, auf dem ein Skalarprodukt definiert ist, ein sogenannter
Hilbertraum.

Referenzen

• Understanding Machine Learning, Kapitel 16
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Overfitting

Thomas Kesselheim Vorschau Letzte Aktualisierung: 9. Juni 2020

In den letzten Vorlesungen haben wir vor allem diskutiert, wie wir eine Hypothese finden,
die die Trainingsdaten möglichst gut beschreibt. Der Sinn einer solchen Hypothese ist es, Vor-
hersagen bei neuen Datenpunkten zu machen. Konkret also: Uns sind viele E-Mails gegeben,
die jeweils als

”
Spam“ oder

”
kein Spam“ markiert sind. Auf dieser Basis wollen wir neu ankom-

mende E-Mails möglichst gut klassifizieren.

1 Beispiel: Klassifikation

In Abbildung 1 sind Punkte in R mit binären Labels −1 und +1 gegeben, dargestellt als blaue
und rote Punkte. Es wäre nun möglich, mittels durch Auswahl einiger Intervalle eine Hypothese
zu finden, die keinen Trainingsfehler hat. Erstellt wurden die Daten jedoch wie folgt. Zunächst
wurde xi ∼ Uniform[0, 1] gezogen wurde. Anschließend wurden die Labels bestimmt über

yi =

{
+1 falls xi + νi ≥ 1

2

−1 sonst
,

wobei νi ∼ Uniform[−0.3, 0.3] ein Rauschen mit Erwartungswert 0 ist. Das Rauschen lässt sich
nicht vorhersagen. Entsprechend sollte einfach nur

h(x) =

{
+1 falls x ≥ 1

2

−1 sonst

als Hypothese verwendet werden. Diese hat zwar einen Trainingsfehler, ist aber die bestmögliche
Vorhersage für neue Punkte.

Abbildung 1: Datenpunkte mit Rauschen.

2 Beispiel: Regression

Ein ähnliches Problem tritt auch bei Regression auf. Hier sind nun die Labels nicht mehr −1
oder +1 sondern beliebige reelle Zahlen.

Abbildung 2 zeigt ein Beispiel von acht Paaren von Datenpunkten mit ihren Labels (xi, yi),
wobei xi ∈ [0, 1] und yi ∈ R. Es wäre nun sehr verführerisch, eine Funktion h zu wählen, die die
Werte in allen gegebenen Punkten genau trifft. Beispielsweise ein Polynom von Grad sieben. In
diesem Fall ist es gegeben durch

h(x) = 5940.33x7−20262.6x6+27659.7x5−19294.7x4+7302.01x3−1476.7x2+148.067x−5.53035 .

Dies entspricht dem roten Funktionsgraph in der Abbildung.
In diesem Fall wurden die Daten wie folgt generiert: Zunächst wurde xi ∼ Uniform[0, 1] gezo-

gen. Anschließend wurde das Label für xi bestimmt als yi = xi+νi, wobei νi ∼ Normal(0, 0.0025).
Das heißt, νi ist ein zufälliges Rauschen aus einer Normalverteilung mit Erwartungswert 0 und
Varianz 0.0025.

Auch in diesem Fall können wir das Rauschen nicht vorhersagen. Deshalb ist die beste
Hypothese h in diesem Fall gegeben durch h(x) = x, eingetragen als die blaue Gerade.
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Abbildung 2: Die rote Kurve ist ein Polynom vom Grad sieben, das genau durch die acht
gegebenen Punkte geht. Die blaue Gerade minimiert den tatsächlichen Fehler.

3 Problemstellung

Wir nehmen an, dass wir Datenpunkte aus einer Menge X erhalten und Labels für derartige
Datenpunkte vorhersagen sollen. Diese Menge möglicher Labels heißt nun Y . Ein Fall ist binäre
Klassifikation, also Y = {−1,+1}. Ein anderer Fall ist Regression mit Y = R.

Wie im agnostischen Fall des PAC-Learning nehmen wir an, dass es eine Wahrscheinlich-
keitsverteilung D über Paare z = (x, y) ∈ X×Y gibt, sodass y das korrekte Label ist für x. Uns
ist eine Trainingsmenge S = {z1, . . . , zm}, zi = (xi, yi) ∈ X × Y aus m Samples gegeben, die
aus D gezogen ist. Auf Basis von S berechnen wir eine Hypothese hS : X → Y , die ein Label
hS(x) für jeden Punkt x vorhersagt.

Wir haben bereits Begriffe wie den Trainingsfehler und den tatsächlichen Fehler kennenge-
lernt. Diese werden wir nun erweitern.

4 Loss-Funktionen und Fehlerbegriffe

Allgemein schreiben wir `(h, z) für den Loss von Hypothese h auf z = (x, y). Im Fall von binärer
Klassifizierung ist die einfachste Wahl für ` der 0/1 Loss, definiert durch

`0−1(h, z) =

{
0 falls h(x) = y

1 sonst
.

Wir haben bereits den tatsächlichen Fehler kennengelernt. Diesen verallgemeinern wir zum
erwarteten Loss einer Hypothese h auf einem Datenpunkt-/Label-Paar gezogen aus D, das
heißt

LD(h) = Ez∼D [`(h, z)] .

Auch können wir den Trainingsfehler verallgemeinern. Dieser ist für eine Menge S von m
Datenpunkt-/Label-Paaren definiert als

LS(h) =
1

m

m∑

i=1

`(h, zi) .
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Anstatt des 0/1 Loss können wir auch andere Funktionen einsetzen. Wir haben bereits den
Hinge Loss im Kontext von Support Vector Machines kennengelernt. Diesen hatten wir nur für
lineare Klassifikatoren hw definiert als

`hinge(hw, z) = max{0, 1− y〈w,x〉} .

Der Vorteil des Hinge Loss ist, dass die Funktion stetig und konvex ist. Es gilt `0−1(hw, z) ≤
`hinge(hw, z) für alle w und z. Das heißt, Fehler werden im Vergleich zum 0/1 Loss im Normalfall
überschätzt. Der Soft-SVM-Ansatz lässt sich auch so interpretieren, dass die Funktion `0−1

durch eine stetige, konvexe Funktion ersetzt wird, die leichtere Optimierung ermöglicht.
Bei Regression versucht man im Normalfall, Fehlerquadrate zu minimieren. Die Loss-Funktion

ist in diesem Fall
`squared(h, z) = (h(x)− y)2 .

5 Verallgemeinerungsfehler und Overfitting

Unser Ziel ist es, eine Hypothese zu finden, deren tatsächlicher Fehler LD(h) möglichst klein
ist. Dafür betrachten wir einen Lernalgorithmus, der eine Hypothese hS auf Basis einer Trai-
ningsmenge S berechnet. Diese Menge S besteht aus m Paaren zi = (xi, yi), die jeweils aus der
Verteilung D gezogen werden.

Den tatsächlichen Fehler LD(hS) der berechneten Hypothese können wir uns nun wie folgt
vorstellen: Einerseits ist hS womöglich auf S schon nicht perfekt. Dies beschreibt der Trainings-
fehler LS(hS). Andererseits repräsentiert das Sample S die Verteilung D möglicherweise nicht
perfekt. Deshalb bezeichnen wir nun

LD(hS)− LS(hS)

als den Verallgemeinerungsfehler.
Als Overfitting versteht man nun das Phänomen, dass bei gewissen Lernalgorithmen der

Trainingsfehler klein wird, der Verallgemeinerungsfehler aber groß. Insbesondere problematisch
ist es, wenn größere Trainingsmengen über einen größeren Verallgemeinerungsfehler zu einem
größeren tatsächlichen Fehler führen.

6 Stabilität von Lernalgorithmen

Wir wollen nun den erwarteten Verallgemeinerungsfehler eines Lernalgorithmus besser verste-
hen. Das heißt, uns interessiert

E [LD(hS)− LS(hS)] , (1)

wobei der Erwartungswert über die Menge S geht. Dies wollen wir umschreiben.
Sei nun I eine Zufallsvariable, die unabhängig gleichverteilt aus {1, . . . ,m} gezogen wir. Der

erwartete Trainingsfehler ist nun

E [LS(hS)] = E

[
1

m

m∑

i=1

`(hS , zi)

]
= E [`(hS , zI)] .

Der erwartete tatsächliche Fehler ist der erwartete Loss auf einem frisch gezogenen Datenpunkt-
/Label-Paar z′, das wiederum aus D gezogen wird

E [LD(hS)] = E
[
`(hS , z

′)
]
.
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Auch dies können wir anders schreiben. Gegeben Samples z1, . . . , zm und z′, sei Si die Menge
z1, . . . , zi−1, z′, zi+1, . . . , zm. Das heißt, wir ersetzen zi durch z′. Da zi und z′ beide aus D gezogen
werden, sind sie identisch verteilt und wir können ihre Rollen vertauschen. Deshalb gilt für alle
i

E
[
`(hS , z

′)
]

= E [`(hSi , zi)] .

Weil diese Gleichung für alle i gilt, können wir auch die Zufallsvariable I von oben wieder
verwenden. Damit gilt insgesamt

E [LD(hS)] = E [`(hSI , zI)] .

Und so kann der erwartete Verallgemeinerungsfehler aus (1) mittels Linearität des Erwar-
tungswerts auch umgeschrieben werden zu

E [LD(hS)− LS(hS)] = E [LD(hS)]−E [LS(hS)] = E [`(hSI , zI)]−E [`(hS , zI)]

= E [`(hSI , zI)− `(hS , zI)] .

Das heißt, der erwartete Verallgemeinerungsfehler kann nur groß sein, wenn es irgendwelche
Si und S gibt, die zu sehr unterschiedlichen Hypothesen führen. Dabei sollte man bedenken,
dass Si und S sich nur in einem einzigen Punkt unterscheiden. Ein Algorithmus, bei dem dies
niemals geschieht, nennen wir stabil.

Definition 12.1. Sei δ : N → R. Ein Lernalgorithmus ist universell δ-austauschstabil, wenn
für alle m ∈ N, alle Mengen S von m Datenpunkt-/Label-Paaren, alle i ∈ {1, . . . ,m} und alle
weiteren Datenpunkt-/Label-Paare z′ gilt

`(hSi , zi)− `(hS , zi) ≤ δ(m) .

Wir nennen ihn universell austauschstabil, falls er universell δ-austauschstabil ist für eine Funk-
tion δ mit δ(m)→ 0 für m→∞.

Wir sehen nun, dass wenn unser Lernalgorithmus universell δ-austauschstabil ist, dass

E [LD(hS)− LS(hS)] = E [`(hSI , zI)− `(hS , zI)] ≤ δ(m) .

Insbesondere, wenn δ(m)→ 0 für m→∞, dann gibt es kein Overfitting.
Der große Vorteil davon, über Stabilität zu sprechen ist, dass es sich ausschließlich um eine

Eigenschaft des Lernalgorithmus handelt. Wir müssen also keine Aussage über Wahrschein-
lichkeitsverteilungen oder statistische Eigenschaften diskutieren, sondern lediglich Algorithmen
entwickeln, deren Ausgabe sich nicht entscheidend ändert, wenn ein Datenpunkt ausgetauscht
wird.

7 Beispiel

In unserem Einstiegsbeispiel haben wir anschaulich gesehen, dass es merkwürdige Effekte haben
kann, Regression mittels einer Interpolation durch Polynome zu machen. Schon mit einem sehr
einfach Beispiel können wir sehen, dass der Algorithmus, der den Trainingsfehler minimiert,
nicht universell austauschstabil ist.

Der Merkmalsraum ist X = R. Für unser Beispiel brauchen wir nur Polynome vom Grad 1,
also Geraden bzw. Hypothesen der Form ha,b(x) = a · x+ b für a, b ∈ R.
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Abbildung 3: Die rote Gerade führt jeweils durch die schwarzen Punkte. Im rechten Bild ist ein
Punkt ersetzt. Auf dem bisherigen Punkt (in blau) gibt es nun einen großen Fehler. Wie viele
Punkte sich in (0, 0) befinden, ist irrelevant.

Betrachten wir zunächst den Lernalgorithmus, der den Trainingsfehler minimiert. Das heißt
hS = ha,b, wobei a und b so gewählt sind, dass Lsquared

S (ha,b) = 1
m

∑m
i=1(axi + b − yi)2 mini-

mal ist. Dieser Algorithmus ist nicht universell austauschstabil. Seien dafür (x1, y1) = (1, 0),
(x2, y2) = . . . = (xm, ym) = (0, 0). Die Hypothese h, die den Trainingsfehler minimiert ist h0,0.
Betrachten wir i = 1, (x′, y′) = (1, 1). Auf Si wird der Trainingsfehler von h1,0 minimiert (siehe
Abbildung 3). Es gilt somit `(hSi , zi) − `(hS , zi) = 1 und somit δ(m) ≥ 1. Auch bei Polyno-
men von höherem Grad tritt derselbe Effekt auf, denn weiterhin minimieren die Geraden den
Trainingsfehler.

In der nächsten Vorlesung werden wir zeigen, dass dies nicht auftritt, wenn wir Regulari-
sierung verwenden. In diesem konkreten Fall würden wir statt Lsquared

S (ha,b) nun λ(a2 + b2) +

Lsquared
S (ha,b) minimieren, wobei λ ein Parameter ist. Der anschauliche Grund ist, dass der

Einfluss eines Punktes (xi, yi) auf den Loss, also 1
m(axi + b − yi)

2, klein wird im Vergleich
zu λ(a2 + b2), sobald m groß wird. Wir erkaufen uns dies über einen höheren Trainingsfehler.
Deshalb sollte λ nicht zu groß gewählt sein.

Referenzen

• Blog-Post von Moritz Hardt: https://www.offconvex.org/2016/03/14/stability/

• Understanding Machine Learning, Kapitel 13.2

• Foundations of Machine Learning, Kapitel 14.1–14.2 (etwas andere Aussage)
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Regularisierung

Thomas Kesselheim Letzte Aktualisierung: 12. Juni 2020

In der letzten Vorlesung haben wir das Phänomen des Overfitting kennengelernt. Zu Er-
innerung: Wir nehmen an, dass ein Lernalgorithmus eine Trainingsmenge von m Datenpunkt-
/Label-Paare aus X × Y erhält und mithilfe von diesem Sample eine Hypothese hS : X → Y
finden soll, die Labels für Datenpunkte vorhersagen sollen. Beim Overfitting tritt es auf, dass
die Hypothese

”
zu gut“ auf den Trainingsdaten ist und sich daher zu schlecht verallgemeinert.

Eine gute Faustregel ist, dass man
”
einfachere“ Hypothesen verwenden sollte, um Overfitting

zu vermeiden. Hierzu werden wir heute ein formales Argument führen.
Wir haben bereits die Definition eines stabilen Lernalgorithmus eingeführt.

Definition 13.1. Sei δ : N → R. Ein Lernalgorithmus ist universell δ-austauschstabil, wenn
für alle m ∈ N, alle Mengen S von m Datenpunkt-/Label-Paaren, alle i ∈ {1, . . . ,m} und alle
weiteren Datenpunkt-/Label-Paare z′ gilt

`(hSi , zi)− `(hS , zi) ≤ δ(m) .

Hierbei ist `(h, z) der Loss von Hypothese h auf z ∈ X × Y . Dieser drückt aus,
”
wie

falsch“ die Hypothese h auf z ist. Unsere Erkenntnis hinsichtlich Overfitting lässt sich knapp
zusammenfassen als:

Ein universell δ-austauschstabiler Lernalgorithmus mit δ(m) → 0 für m → ∞ ver-
meidet Overfitting.

Heute werden mit Regularisierung einen grundsätzlichen Ansatz kennenlernen, der zu Sta-
bilität führt. Anstatt eine Hypothese hS zu wählen, sodass LS(hS) minimiert wird, sollten

”
extreme“ Hypothesen vermieden werden.

1 Annahmen

Wir betrachten heute keine beliebigen Hypothesenklassen mehr, sondern treffen ein paar Annah-
men. Zunächst einmal nehmen wir an, dass die Hypothesen in unsere Klasse H durch Vektoren
w ∈ Rn parametrisiert sind. Das heißt,

H = {hw : X → Y | w ∈M} ,

wobei M ⊆ Rn eine konvexe Menge ist. Ein typisches Beispiel sind lineare Klassifikatoren (hier
ist Y = {−1,+1})

hw(x) =

{
+1 falls 〈w,x〉 ≥ 0

−1 sonst
.

Wie wir gesehen haben, können mittels Einbettungen in einen Feature Space auch andere Hy-
pothesen so dargestellt werden.

Analog kann man lineare Regression darstellen (nun ist Y = R) über

hw(x) = 〈w,x〉 .

Für unsere Ergebnisse wird vollkommen unerheblich sein, wie die Hypothese hw genau
definiert ist. Wir nehmen lediglich an, dass die Loss-Funktionen konvex sind. Das heißt, dass
w 7→ `(hw, z) konvex ist für alle z.



AGML, Sommersemester 2020 Vorlesung 13 (Seite 2 von 5)

Darüber hinaus nehmen wir an, dass sie ρ-Lipschitz sind. Das heißt, dass für alle w,w′ ∈M
und alle z

`(hw, z)− `(hw′ , z) ≤ ρ‖w −w′‖ .

Beispiel 13.2. Der 0/1 Loss ist nicht konvex. Entsprechend sind unsere heutigen Ergebnisse
nicht anwendbar.

Der Hinge Loss auf z = (x, y) ist definiert als

`hinge(hw, z) = max{0, 1− y〈w,x〉} .

Er ist ‖x‖-Lipschitz.
Der quadratische Loss (für Regression) ergibt sich zu

`squared(hw, z) = (〈w,x〉 − y)2 .

Er ist ρ-Lipschitz für ρ = 2‖x‖2 maxw∈M‖w‖.

2 Starke Konvexität

Wir werden nun eine genauere Definition von Konvexität einführen, die zum Ausdruck bringt,
wieviel deutlicher eine Funktion wächst als eine lineare Funktion. Dafür vergleichen wir sie mit
einer quadratischen Funktion.

Definition 13.3. Sei σ ≥ 0. Eine Funktion f : M → R heißt σ-stark konvex, wenn für alle
u,v ∈M und alle λ ∈ [0, 1] gilt1

f(λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v)− σ

2
λ(1− λ)‖u− v‖2 .

Eine Funktion ist konvex genau dann, wenn sie 0-stark konvex ist.

Konvexität erfordert, dass die Funktion f jeweils unterhalb der Verbindungslinien auf dem
Funktionsgraphen bleibt. Starke Konvexität mit σ > 0 fordert zusätzlich, dass sie unterhalb
einer verbindenden Parabel bleibt. Das heißt, die Funktion muss

”
durchhängen“ (siehe Abbil-

dung 1).

x

f(x)

Abbildung 1: Eine stark konvexe Funktion in schwarz mit einer direkten Verbindunglinie zweier
Punkt in rot und einer dazwischen liegenden Parabel in blau.

1Es mag etwas verwundern, dass der Faktor σ
2

ist und nicht σ. Auf diese Weise bleibt die Definition äquivalent
mit anderen in der Literatur üblichen Formulierungen.
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Beispiel 13.4. Für jedes α ≥ 0, ist Funktion f : Rn → R, f(x) = α‖x‖2 jeweils 2α-stark
konvex.

Für alle u,v ∈ Rn und alle λ ∈ [0, 1] gilt

‖λu + (1− λ)v‖2 =

n∑

i=1

(λui + (1− λ)vi)
2 =

n∑

i=1

(λui)
2 + ((1− λ)vi)

2 + 2λui(1− λ)vi

= λ2‖u‖2 + (1− λ)2‖v‖2 + 2λ(1− λ)〈u,v〉
= λ‖u‖2 − λ(1− λ)‖u‖2 + (1− λ)‖v‖2 − λ(1− λ)‖v‖2 + 2λ(1− λ)〈u,v〉
= λ‖u‖2 + (1− λ)‖v‖2 − λ(1− λ)‖u− v‖2 .

Indem wir beide Seiten dieser Gleichung mit α multiplizieren, erhalten wir

f(λu + (1− λ)v) = λf(u) + (1− λ)f(v)− 2α

2
λ(1− λ)‖u− v‖2 .

Das heißt, die geforderte Ungleichung ist für σ = 2α sogar mit Gleichheit erfüllt.

Die Bedeutung von stark konvexen Funktionen zeigt sich im folgenden Lemma. Es sagt
aus, dass wir in deutlicher Entfernung vom Minimum auch deutlich größere Funktionswerte
beobachten.

Lemma 13.5. Sei f : M → R eine σ-stark konvexe Funktion. Sei w ∈ arg minv∈M f(v) ein
Punkt, der f minimiert. Dann gilt für alle u ∈M

f(u)− f(w) ≥ σ

2
‖u−w‖2 .

Beweis. Wir betrachten die Verbindungslinie zwischen u und w. Für alle λ ∈ [0, 1] haben wir
gemäß starker Konvexität

f(λu + (1− λ)w) ≤ λf(u) + (1− λ)f(w)− σ

2
λ(1− λ)‖u−w‖2 .

Gleichzeitig wird f durch w minimiert. Also

f(λu + (1− λ)w) ≥ f(w) .

Somit gilt für alle λ ∈ [0, 1]

λf(u) + (1− λ)f(w)− σ

2
λ(1− λ)‖u−w‖2 ≥ f(w) .

Falls λ > 0 ist, ist dies äquivalent zu

f(u)− f(w) ≥ σ

2
(1− λ)‖u−w‖2 .

Angenommen, es gilt nun

f(u)− f(w) <
σ

2
‖u−w‖2 ,

dann müsste auch
f(u)− f(w) < c

σ

2
‖u−w‖2

für irgendein c < 1 gelten. Dann könnten wir λ = 1− c wählen und würden einen Widerspruch
erhalten. Also gilt das Lemma.

Wir halten noch eine einfache Beobachtung fest, die sich durch Nachrechnen zeigen lässt.

Beobachtung 13.6. Ist f1 : M → R eine σ-stark konvexe Funktion, f2 : M → R eine konvexe
Funktion, dann ist f1 + f2 eine σ-stark konvexe Funktion.
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3 Stark konvexe Regularisierung führt zu Stabilität

Wir betrachten nun den Lernalgorithmus, der anstatt w zu finden, sodass LS(hw) minimiert
wird, eine regularisierte Zielfunktion f(w) = R(w)+LS(hw) minimiert. Konkret ist in unserem
Fall R(w) = α‖w‖2. Wie wir oben gesehen haben, ist R nun 2α-stark konvex und somit auch
f .

Beispiel 13.7. Für lineare Klassifikation mittels Hinge Loss ergibt sich genau das Soft-SVM-
Problem2.

Für Regression nennt sich die Vorgehensweise α‖w‖2 + Lsquared
S (hw) zu minimieren Ridge

Regression.

Wir können nun zeigen, dass jeder Lernalgorithmus, der eine stark-konvexe Regularisie-
rungsfunktion verwendet, stabil ist.

Satz 13.8. Sind die Loss-Funktionen konvex und ρ-Lipschitz und ist die Regularisierungsfunk-

tion σ-stark konvex, dann ist der Lernalgorithmus universell 2ρ2

mσ -austauschstabil.

Es ist wichtig, dass δ(m) = 2ρ2

mσ gegen 0 konvergiert. Gemäß der Ergebnisse aus der letz-
ten Vorlesung heißt das, dass der erwartete Verallgemeinerungsfehler verschwindet, wenn wir
genügend Samples verwenden.

Beweis von Satz 13.8. Sei w∗ der Vektor, der die Hypothese beschreibt, die der Lernalgorithmus
auf S berechnet. Das heißt, hS = hw∗ . Analog sei wi der entsprechende Vektor für die Lösung
auf Si.

Laut Definition minimiert w∗ die Funktion f(w) := R(w) + 1
m

∑m
j=1 `(hw, zj). Andererseits

minimiert wi die Funktion f i(w) := R(w) + 1
m

∑m
j=1,j 6=i `(hw, zj) + `(hw, z

′).
Deshalb erhalten wir jeweils durch Anwendung von Lemma 13.5

f(wi)− f(w∗) ≥ σ

2
‖wi −w∗‖2

und
f i(w∗)− f i(wi) ≥ σ

2
‖w∗ −wi‖2 .

In Kombination also

f(wi)− f(w∗) + f i(w∗)− f i(wi) ≥ σ‖wi −w∗‖2

Wenn wir die Definitionen von f und f i einsetzen, erhalten wir die äquivalente Ungleichung

1

m
`(hwi , zi)−

1

m
`(hwi , z′)− 1

m
`(hw∗ , zi) +

1

m
`(hw∗ , z

′) ≥ σ‖wi −w∗‖2 .

Durch die Lipschitz-Bedingungen können wir abschätzen

`(hwi , zi)− `(hw∗ , zi) ≤ ρ‖wi −w∗‖ und `(hwi , z′)− `(hw∗ , z′) ≤ ρ‖wi −w∗‖ .

Also
2ρ‖wi −w∗‖ ≥ mσ‖wi −w∗‖2 ,

2Ein technischer Unterschied ist, ob die (nun versteckte) Verschiebung der Hyperebene auch regularisiert wird
oder nicht. Wir ignorieren dies.
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und somit

‖wi −w∗‖ ≤ 2ρ

mσ
.

Das heißt, es gilt auch

`(hSi , zi)− `(hS , zi) = `(hwi , zi)− `(hw∗ , zi) ≤ ρ‖wi −w∗‖ ≤ 2ρ2

mσ
.

4 Fazit

Wie wir gesehen haben, kann Regularisierung also Overfitting vermeiden. Anzumerken ist je-
doch, dass die Regularisierung nicht zu stark gewählt werden darf. Anderenfalls wird der Trai-
ningsfehler groß, es tritt also Underfitting ein.

Referenzen

• Understanding Machine Learning, Kapitel 13.3–13.4

• Foundations of Machine Learning, Kapitel 14.3 (weitergehend)
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Boosting

Thomas Kesselheim Letzte Aktualisierung: 16. Juni 2020

Beim maschinellen Lernen kommt es häufig vor, dass man in der Lage ist, Datenpunkte
einigermaßen gut zu klassifizieren aber nicht genau genug. Ein Grund dafür kann sein, dass
Hypothesen verwendet werden, die nicht ausdrucksstark genug sind, um Datenpunkte von ein-
ander zu unterscheiden. Heute werden wir eine sehr hilfreiche Technik kennenlernen, die die
Genauigkeit auf der Trainingsmenge deutlich verbessert, das sogenannte Boosting.

1 Ein einführendes Beispiel

Schauen wir uns zunächst ein einfaches Beispiel an. Es mag sich zunächst etwas trivial anfühlen;
es bedarf aber hoffentlich nicht zu viel Phantasie, um zu sehen, dass solche Probleme auch in
komplexeren Szenarien auftreten.

Betrachten wir den Fall von binärer Klassifikation von Punkten aus den reellen Zahlen R.
Zu Beginn haben wir nur Schwellenwertfunktionen zur Verfügung. Dabei handelt es sich um
Hypothesen der Form:

h(x) =

{
−1 falls x < a

1 falls x ≥ a
oder h(x) =

{
−1 falls x > a

1 falls x ≤ a
.

[

a

]

a

Wir können solche Hypothesen auch sehr knapp ausdrücken über zwei Parameter w1 ∈ R,
w2 ∈ {−1, 1}, sodass hw1,w2(x) = w2 · sign(x− w1).

1

Nehmen wir nun weiter an, dass die Grundwahrheit eigentlich ist, dass alle x ∈ [a, b] positiv
sind und alle x 6∈ [a, b] negativ sind. Auch in diesem sehr einfachen Fall können wir im Allgemei-
nen keinen Trainingsfehler unter 1

3 erreichen. Falls beispielsweise S = {(−1,−1), (0,+1), (1,−1)}
wird immer einer der Punkte inkorrekt klassifiziert werden.

Hingegen wird eine Linearkombination von Klassifikatoren gute Ergebnisse liefern. Ist ir-
gendeine Trainingsmenge S = {(x1, y1), . . . , (xm, ym)} gegeben, definieren wir h∗ mithilfe eines
beliebigen z < mini xi über

h∗(x) = sign (ha,1(x) + hb,−1(x) + hz,−1(x)) .

Nun ergibt sich für x ∈ [a, b], dass ha,1(x) = hb,−1(x) = 1, hz,−1(x) = −1. Also h∗(x) = 1. Für
x ∈ (z, a) ∪ (b,∞) ergibt sich h∗(x) = −1. Somit ist für alle i garantiert, dass h∗(xi) = yi und
damit errS(h∗) = 0. Trotzdem handelt es sich nicht um die Grundwahrheit: Unterhalb von z ist
die Klassifikation falsch.

Unser heutiges Ziel wird sein, diese Idee auf allgemeine Hypothesenklassen zu verallgemei-
nern.

1Wir nehmen an, dass die Signum-Funktion +1 an der Stelle 0 ist.
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z a b

2 Problemstellung

Uns ist eine Trainingsmenge S = {(x1, y1), . . . , (xm, ym)}, xi ∈ X, yi ∈ {−1,+1} für alle i,
gegeben und wir möchten eine Hypothese h berechnen, sodass errS(h) = 1

m |{i | h(xi) 6= yi}|
nah an 0 liegt.

Wir haben allerdings nur einen schwachen Lernalgorithmus zur Verfügung. Als Eingabe
erhält er beliebige Gewichte p1, . . . , pm ≥ 0 mit

∑
i pi = 1 (Die Gewichte definieren also eine

Wahrscheinlichkeitsverteilung über S). Daraufhin berechnet er eine Hypothese hp, sodass

errp(hp) :=
∑

i:hp(xi)6=yi
pi ≤

1

2
− γ

für ein festes γ > 0.2 Für pi = 1
m ist errp genau der Trainingsfehler. Das heißt, die Hypothese

hp stellt sicher, dass eine gewichtete Version des Trainingsfehlers klein ist.

Beispiel 14.1. Betrachten wir wieder das Eingangsbeispiel mit Schwellenwertfunktionen, aber
die Grundwahrheit ist definiert über ein Intervall [a, b]. Wir werden nun zeigen, dass die Schwel-
lenwertfunktion h, die errp(h) minimiert, die obige Garantie mit γ = 1

6 erfüllt. Das heißt, ein
Algorithmus, der den gewichteten Trainingsfehler auf Schwellenwertfunktionen minimiert ist ein
schwacher Lernalgorithmus, wenn die Grundwahrheit durch ein Intervall definiert ist.

Um γ = 1
6 zu zeigen, stellen wir fest, dass für jeden Vektor p und alle a < b gilt

∑

i:xi<a

pi ≤
1

3
oder

∑

i:a≤xi≤b
pi ≤

1

3
oder

∑

i:xi>b

pi ≤
1

3
.

Zwei der drei Arten von Datenpunkten (unter a, zwischen a und b, über b) können wir leicht
durch eine Schwellenwertfunktion richtig klassifizieren. Der kleinste Fehler wird also höchstens
1
3 = 1

2 − 1
6 sein.

Wir werden zeigen, dass ein solcher schwacher Lernalgorithmus ausreicht, um einen starken
Lernalgorithmus zu entwerfen: Gegeben ein ε > 0 und eine Trainingsmenge S wird er den
schwachen Lernalgorithmus nutzen, um Hypothesen h1, . . . , hT und α1, . . . , αT zu berechnen,
sodass h∗ mit h∗(x) = sign(α1h1(x) + . . .+ αThT (x)) die Bedingungen errS(h∗) ≤ ε erfüllt.

3 Idee für einen Algorithmus

Wir nehmen nun an, dass uns ein schwacher Lernalgorithmus gegeben ist, und wollen auf dieser
Basis einen starken Lernalgorithmus entwickeln. Die Eingabe für diesen ist eine Trainingsmenge
S = {(x1, y1), . . . , (xm, ym)}.

Unser Algorithmus ruft also den schwachen Lernalgorithmus wiederholt auf der Trainings-

menge mit unterschiedlicher Gewichtung auf. Anfänglich setzen wir p
(1)
i = 1

m für alle i. Das

2Das Boosting-Framework kann erweitert werden um die Annahme, dass diese Schranke nur mit gewisser
Wahrscheinlichkeit eingehalten wird.
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heißt, der schwache Lernalgorithmus minimiert den Trainingsfehler so gut es ihm möglich ist.
Wir erhalten eine Hypothese h1. Wir wissen nun, dass h1 falsch liegt auf höchstens (12 − γ)m
Punkten in S. Anders formuliert ist h1 auf etwas mehr als der Hälfte der Punkte in S korrekt.

Nun rufen wir den schwachen Lernalgorithmus erneut auf. Die Idee ist nun p(2) so zu setzen,

dass p
(2)
i > 1

m , falls h1(xi) 6= yi, und p
(2)
i < 1

m , falls h1(xi) = yi. Das heißt, in dieser Ausführung
soll der schwache Lernalgorithmus sich mehr auf diejenigen Punkte konzentrieren, die bislang
falsch klassifiziert wurden.

Wir müssen nun angeben, wie sich die Gewichte p
(t)
i ergeben. Wir nutzen dazu Gewichte

w
(t)
i , die sich nicht zwangsläufig zu 1 aufsummieren. Es ist immer p

(t)
i = w

(t)
i /W (t), wobei W (t)

die Summe aller w
(t)
i ist.

Das Gewicht w
(t)
i drückt aus, wie oft Datenpunkt i von den Hypothesen h1, . . . , ht−1 falsch

klassifiziert worden ist. Je größer es ist, desto mehr dieser Hypothesen lagen falsch. Entsprechend
wichtiger ist es, dass der schwache Lernalgorithmus diesen Punkt richtig klassifiziert, wenn er
ht berechnet.

Konkret ist w
(1)
i = 1 für alle i. In Schritt t werden die Gewichte über die Regel

w
(t+1)
i =

{
e−ηtw(t)

i falls ht(xi) = yi

eηtw
(t)
i sonst

angepasst. Dabei ist ηt > 0 für alle Punkte gleich und abhängig vom aktuellen Fehler. Für die
spätere Rechnung können wir dies etwas knapper schreiben. Wegen

yiht(xi) =

{
+1 falls ht(xi) = yi

−1 sonst

ergibt sich

w
(t+1)
i = w

(t)
i e−ηtyiht(xi) .

Diese Art, Gewichte mittels multiplikativer Veränderung anzupassen, ist beim Entwurf von
Algorithmen relativ verbreitet. Sie begegnet uns auch bei Algorithmen für ganz andere Proble-
me. Die Zusammenhänge können wir an dieser Stelle leider nicht diskutieren.

4 AdaBoost

Der Algorithmus AdaBoost (für Adaptive Boosting) benutzt genau diese Ideen. Er lautet wie
folgt.

• Initialisiere w
(1)
i = 1 für alle i

• In Schritt t = 1, . . . , T

– Berechne W (t) =
∑m

i=1w
(t)
i , p

(t)
i = w

(t)
i /W (t)

– Sei ht das vom schwachen Lernalgorithmus auf p(t) berechnete Ergebnis

– Berechne εt =
∑

i:ht(xi)6=yi p
(t)
i (Fehler von ht auf p(t))

– Sei ηt = 1
2 ln

(
1
εt
− 1
)

– Aktualisiere Gewichte w
(t+1)
i = w

(t)
i e−ηtyiht(xi)

• Gib h∗ aus, definiert über h∗(x) = sign
(∑T

t=1 ηtht(x)
)



AGML, Sommersemester 2020 Vorlesung 14 (Seite 4 von 5)

Satz 14.2. Der Algorithmus AdaBoost garantiert errS(h∗) ≤ exp(−2γ2T ).

Zur Erinnerung: γ stammt aus der Garantie des schwachen Lernalgorithmus. Interessanter-
weise braucht der Algorithmus es nicht zu kennen.

Beweis. Sei gt(x) =
∑t

t′=1 ηt′ht′(x). Durch diese Definition sind w
(t)
i = e−yigt−1(xi) and h∗(x) =

sign(gT (x)).

Wir betrachten, wie sich die Summe der Gewichte,W (t) =
∑m

i=1w
(t)
i , über die Zeit verändert.

Wir werden zeigen, dass gilt

W (t+1) ≤ e−2γ
2
W (t) für alle t ∈ {1, . . . , T} . (1)

Betrachten wir zunächst, wie diese aus dieser Ungleichung die Aussage des Satzes folgt. Der
Algorithmus läuft für T Schritte. Aufgrund von Ungleichung (1) gilt im Anschluss W (T+1) ≤
e−2γ

2TW (1) = e−2γ
2Tm.

Darüber hinaus gilt für alle i mit h∗(xi) 6= yi, dass yigT (xi) ≤ 0, denn das Produkt zweier
reeller Zahlen mit unterschiedlichem Vorzeichen ist immer nicht-positiv. Das bedeutet, dass für

diese i auch w
(T+1)
i = e−yigT (xi) ≥ 1. Für alle andere i nutzen wir, dass w

(T+1)
i ≥ 0. So erhalten

wir insgesamt W (T+1) ≥ |{i | h∗(xi) 6= yi}| und damit

errS(h∗) ≤ 1

m
W (T+1) ≤ e−2γ

2T .

Die Aussage des Satzes ist damit bewiesen.
Damit müssen wir also nur noch Ungleichung (1) zeigen. Die Summe der Gewichte nach

Schritt t ist

W (t+1) =
m∑

i=1

w
(t+1)
i =

m∑

i=1

w
(t)
i e−yiηtht(xi) .

Das heißt, die Änderung ist

W (t+1)

W (t)
=

m∑

i=1

w
(t)
i

W (t)
e−yiηtht(xi) =

m∑

i=1

p
(t)
i e−yiηtht(xi) =

∑

i:ht(xi)=yi

p
(t)
i e−ηt +

∑

i:ht(xi)6=yi
p
(t)
i eηt .

Gemäß Definition
∑

i:ht(xi)6=yi p
(t)
i = εt und eηt =

√
1/εt − 1. Also

W (t+1)

W (t)
= (1− εt)e−ηt + εte

ηt = (1− εt)
1√

1/εt − 1
+ εt

√
1/εt − 1

= (1− εt)
√

εt
1− εt

+ εt

√
1− εt
εt

= 2
√
εt(1− εt) .

Der schwache Lernalgorithmus garantiert uns, dass εt ≤ 1
2 − γ und somit

W (t+1)

W (t)
= 2
√
εt(1− εt) ≤ 2

√(
1

2
− γ
)(

1

2
+ γ

)
=
√

1− 4γ2 ≤
√

e−4γ2 = e−2γ
2
.

Dies zeigt Ungleichung (1) und damit ist die Aussage bewiesen.
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5 Die Schattenseiten

Wir haben nun hergeleitet, dass wir auf jeder Trainingsmenge S einen Trainingsfehler von
höchstens exp(−2γ2T ) erhalten werden, wenn wir T Iteration von AdaBoost verwenden. Es
liegt nun nahe, T so groß wie möglich zu wählen, weil dadurch der Fehler kleiner und kleiner
wird. Dieser kleinere Fehler kann jedoch durch Overfitting zustande kommen.

Formaler gesprochen: Die VC-Dimension der Klasse von Hypothesen, die AdaBoost in T
Iterationen berechnen kann, wächst in T . Betrachten wir dazu X = R und ein beliebiges m ∈
N. Wenn T im Verhältnis groß genug ist, dann kann Boosting von Schwellenwertfunktionen
m Punkte mit beliebigen Labels versehen. Das heißt, die VC-Dimension ist mindestens m in
diesem Fall. Hierzu stellen wir fest, dass γ = 1

2m gilt, wenn wir das Label eines Punktes richtig
setzen und bei mindestens der Hälfte der übrigen Punkte. Mit T ≥ 1

2γ2
ln(2m) erhalten wir

errS(h∗) ≤ 1
2m . Also muss errS(h∗) = 0 sein.

Insgesamt heißt dies, dass man vorsichtig sein muss, wenn man Boosting anwendet: Es ist ein
hilfreiches Werkzeug, um besser klassifizieren zu können, aber es gibt den bekannte Abwägung
zwischen Trainingsfehler und Overfitting.

Referenzen

• Understanding Machine Learning, Kapitel 10

• Foundations of Machine Learning, Kapitel 7

• Freund, Yoav; Schapire, Robert E (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences. 55:
119. (Original AdaBoost-Paper)
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Komposition

Anne Driemel Letzte Aktualisierung: 18. Juni 2020

Wir haben in der letzten Vorlesung das Boosting kennengelernt, welches schwache Lernalgo-
rithmen miteinander kombiniert um einen starken Lernalgorithmus zu erhalten. Beim Boosting
ergibt sich eine neue Hypothesenklasse aus den möglichen Linearkombinationen der Hypothe-
senklassen der benutzten schwachen Lernalgorithmen. Allerdings erzeugt das Boosting auch
eine höhere VC-Dimension und somit die Gefahr, dass Overfitting geschieht. Heute werden wir
genauer analysieren, wie sich die Komposition mehrerer Hypothesen auf die VC-Dimension der
resultieren Hypothesenklasse auswirkt. Wir betrachten neben dem Boosting auch andere Arten
der Komposition.

1 Achsenparallele Hyperquader

Wir schauen uns zunächst die Klasse der Schwellenwertfunktionen in Rd an und zeigen eine
obere Schranke für die VC-Dimension. Schwellwertfunktionen können kombiniert werden, um
Hyperquader darzustellen. Dies wird uns als einleitendes Beispiel dienen, bevor wir auf komple-
xere Kompositionen von Hypothesenklassen eingehen.

Sei die Klasse der Schwellenwertfunktionen in Rd definiert als Menge von Funktionen der
Form hi,a,b : Rd → {+1,−1} mit 1 ≤ i ≤ d, a ∈ R, b ∈ {+1,−1} und

hi,a,b(x1, . . . , xd) =

{
+b falls xi ≥ a
−b sonst

Eine Schwellenwertfunktion hi,a,b entspricht der Partitionierung der Grundmenge durch eine
achsenparallelen Hyperebene. Wir definieren die Klasse der Hyperquader in Rd als Menge von
Funktionen ha,b : Rd → {+1,−1} definiert durch Vektoren a = (a1, . . . ad) ∈ Rd und b =
(b1, . . . bd) ∈ Rd mit ai < bi für alle 1 ≤ i ≤ d und

ha,b(x1, . . . , xd) =

{
+1 falls ∀i : ai ≤ xi ≤ bi
−1 sonst

Es ist leicht zu sehen, dass jeder Hyperquader durch eine Komposition von 2d Schwellenwert-
funktionen darstellbar ist. Wie können wir nun leicht obere Schranken für die VC-Dimension von
Hyperquadern zeigen? Wir analysieren zunächst die VC-Dimension der Schwellenwertfunktion.

Lemma 15.1. Sei H die Klasse der Schwellenwertfunktionen mit Grundmenge Rd. H hat VC-
Dimension höchstens max(2 log2 d, 8).

Beweis. Sei R das zu H zugehörige Mengensystem und sei A ⊆ Rd eine Menge, die von R
aufgespalten wird. Zur Erinnering, das heißt dass für jedes A′ ⊆ A eine Menge r ∈ R existiert,
sodass A′ = r ∩A. Ziel ist es eine obere Schranke für |A| zu zeigen, denn die VC-Dimension ist
definiert als die Kardinalität der größten aufgespaltenen Menge. Dafür sei t = |A|.

Wir interessieren uns also für die Anzahl der verschiedenen Mengen r ∩ A mit r ∈ R, also
die Größe der Menge R|A. Gleichzeitig wissen wir, dass es genau 2t verschiedenen Teilmengen
von A gibt, die damit dargestellt werden. Es muss also gelten

2t ≤
∣∣R|A

∣∣
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Daraus wollen wir eine obere Schranke für t ableiten.
Die wichtige Beobachtung ist nun, dass es höchstens 2dt verschiedene nicht-leere Teilmengen

von A gibt, die durch eine achsenparallele Hyperebene abgespalten werden können, da A in jeder
Dimension höchstens t verschiedene Koordinaten hat. Das heißt

∣∣R|A
∣∣ ≤ dt.

Also ist 2t ≤ 2dt. Nun machen wir eine Fallunterscheidung. Angenommen, dass t ≤ d. Dann
ist 2t ≤ 2d2. Durch Logarithmieren auf beiden Seiten ergibt sich t ≤ 2 log2 2d. Der zweite Fall
ist, dass t > d. Daraus ergibt sich analog t < 2 log2 2t. Diese Ungleichung kann für t ∈ N nur
erfüllt werden wenn t ≤ 8.

Wir haben also hergeleitet, dass

t ≤ max(2 log2 2d, 8)

Da dies für beliebige Mengen A gilt, die durch R aufgespalten werden, folgt die obere
Schranke für die VC-Dimension nun direkt.

2 Komposition

Definition 15.2 (Komposition). Sei X eine feste Grundmenge und sei C eine Klasse von Funk-
tionen der Form f : {+1,−1}k → {+1,−1}. Sei H eine Hypothesenklassen mit Grundmenge
X und sei R das zugehörige Mengensystem. Sei HC die Hypothesenklasse aller Funktionen
g : X → {+1,−1} mit

g(x) = f(h1(x), . . . , hk(x)) und h1, . . . , hk ∈ H, f ∈ C

Wir bezeichnen mit RC das zugehörige Mengensystem.

Beispiel 15.3. Im Fall von Boosting, ist die Klasse C die Menge aller Funktionen der Form
f(y1, . . . , yk) = sign(

∑
1≤i≤k αiyi) mit αi ≥ 0. Der Fakt, dass dies einer Komposition nach

Definition 15.2 entspricht, ist dabei unabhängig davon, wie die Gewichte αi gewählt werden.

Wir betrachten zunächst den Fall, dass die Klasse C nur aus einer festen Funktion besteht,
zum Beispiel der Funktion die in dem zugehörigen Mengensystem die Schnittmenge der positiven
Mengen erzeugt:

f(y1, . . . , yk) =

{
+1 falls

∑k
i=1 yi = k

−1 sonst
(1)

Wir bezeichnen die Komposition in dem Fall einer festen Funktion f mitHf , beziehungsweise
das Mengensystem mit Rf .

Beispiel 15.4. Sei H die Klasse der Schwellenwertfunktionen und sei f definiert wie in (1)
mit k = 2d. Dann ist Rf die Menge aller Hyperquader in Rd. Das heißt, die Menge enthält alle
beschränkten Hyperquader und zusätzlich solche, die in mindestens einer Richtung unbeschränkt
sind.

Beispiel 15.5. Sei R das Mengensystem aller Halbräume in R2 und sei f definiert wie in
(1) mit k = 3. Dann ist Rf die Menge aller verallgemeinerten Dreiecke in R2. Das heißt, die
Menge enthält alle beschränkten Dreiecke und zusätzlich solche Dreiecke, die in einer Richtung
unbeschränkt sind, siehe Abbildung 1.
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Abbildung 1: Zwei Beispiele von verallgemeinerten Dreiecken.

Wir zeigen nun eine obere Schranke für die VC-Dimension von einfachen Kompositionen,
also Kompositionen mit einer festen Funktion f . Dafür zeigen wir erst ein Hilfslemma. Wir
notieren mit lnx den natürlichen Logarithmus zur Basis e.

Lemma 15.6. Für x > 0 und u ∈ R gilt x ≤ u lnx =⇒ x ≤ 2u lnu

Beweis. Wir nutzen, dass für jedes x > 0 gilt, dass lnx ≤ √x.

x ≤ u lnx

=⇒ x ≤ u√x
=⇒ lnx ≤ lnu+ 1

2 lnx

=⇒ 1
2 lnx ≤ lnu

=⇒ lnx ≤ 2 lnu

Die Aussage folgt nun durch einfaches Einsetzen.

Satz 15.7. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension höchstens
d mit 3 ≤ d < ∞. Sei f : {+1,−1}k → {+1,−1} eine feste Funktion mit k ≥ 3. Die VC-
Dimension der Komposition Hf ist höchstens 4dk ln(2dk).

Beweis. Sei A ⊆ X eine Menge, die von dem zugehörigen Mengensystem Rf aufgespalten wird.
Wir folgen nun derselben Strategie wie in dem Beweis zu Lemma 15.1. Die Herausforderung
besteht darin, eine obere Schranke für

∣∣Rf |A
∣∣ zu finden. Zur Erinnerung, diese Menge ist wie

folgt definiert.
Rf |A = { r ∩A | r ∈ Rf }

Laut Definition des Mengensystems wissen wir, dass für jede Menge r ∈ Rf Hypothesen
h1, . . . , hk ∈ H existieren, sodass

r = { x ∈ X | f(h1(x), . . . , hk(x)) = 1 }

Also ist
r ∩A = { x ∈ A | f(h1|A(x), . . . , hk|A(x)) = 1 }

Daraus folgt, dass die Anzahl der verschiedenen Mengen r∩Amit r ∈ Rf nur von Funktionen
inH|A abhängt. Deren Anzahl ist durch die Wachstumsfunktion ΠH(t) beschränkt. Insbesondere
entsteht eine Menge r ∩ A indem wir k Hypothesen aus H|A auswählen. Also ist laut dem
Wachstumslemma

∣∣Rf |A
∣∣ ≤

∣∣H|A
∣∣k ≤ (ΠH(t))k ≤

(
et

d

)dk

≤ tdk (2)

wobei wir nutzen, dass d ≥ 3 angenommen wird.
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Daraus leiten wir ab, dass 2t ≤ tdk und durch Logarithmieren mit dem natürlichen Loga-
rithmus auf beiden Seiten ergibt sich

t ln 2 ≤ (dk) ln t

Da ln 2 > 0.5 ergibt sich durch Umformen t ≤ 2dk ln t. Nun können wir Lemma 15.6 anwenden
und erhalten

t ≤ 4dk ln(2dk)

Da dies für beliebige Mengen A gilt, die durch das Mengensystem aufgespalten werden,
ergibt sich die obere Schranke für die VC-Dimension.

Aus obigen Satz folgt nun für die Mengensysteme in unseren Beispielen, dass die VC-
Dimension von Dreiecken durch eine Konstante beschränkt ist und für die Hyperquader in
Rd ergibt sich zusammen mit Lemma 15.1 eine obere Schranke von O(d log2 d).

3 VC-Dimension des Boostings

Satz 15.8. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension höchstens
d mit 3 ≤ d < ∞. Sei C die Klasse von Funktionen f : {+1,−1}k → {+1,−1} der Form
f(y1, . . . , yk) = sign(

∑
1≤i≤k αiyi) mit αi ≥ 0 und sei k ≥ 3. Die VC-Dimension der Komposi-

tion HC ist höchstens 4(d + 1)k ln(2(d + 1)k).

Beweis. Wir folgen wieder derselben Strategie wie in dem Beweis zu Lemma 15.1. Der Beweis
ist ähnlich zu dem Beweis zu Satz 15.7. Wir müssen allerdings zusätzlich die verschiedenen
Funktionen in C beachten.

Sei A ⊆ X eine Menge, die von RC aufgespalten wird und sei t =
∣∣A
∣∣. Wie zuvor wollen

wir wieder eine obere Schranke für die Anzahl der verschiedenen Mengen in RC |A finden, und
nutzen, dass 2t ≤

∣∣RC |A
∣∣ gelten muss. Zur Erinnerung,

RC |A = { r ∩A | r ∈ RC }

Betrachte eine konkrete Teilmenge A′ ⊆ A. Falls A′ abgespalten wird, dann existiert eine
Menge r ∈ RC sodass A′ = r ∩ A. Die Menge r ist definiert durch konkrete Hypothesen
h1, . . . , hk ∈ H und eine konkrete Funktion f ∈ C mit

r = { x ∈ X | f(h1(x), . . . , hk(x)) = 1 }

Wie zuvor haben wir

r ∩A = { x ∈ A | f(h1|A(x), . . . , hk|A(x)) = 1 }

Wir wissen aus der vorherigen Analyse im Beweis zu Satz 15.7, dass für ein festes f ∈ C
höchstens (ΠH(t))k verschiedene Mengen erzeugt werden können, weil wir uns auf die Funktio-
nen in H|A beschränken können.

Ähnlich wollen wir nun auch die Funktionen f ∈ C beschränken. Dafür stellen wir zunächst
eine andere Frage. Wieviele Mengen können erzeugt werden, wenn wir k Hypothesen aus H
festhalten und f ∈ C frei wählen können?

Seien h1, . . . , hk fest und betrachte die Menge

B = { (h1(x), . . . , hk(x)) | x ∈ A }
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Beachte, dass
∣∣B
∣∣ =

∣∣A
∣∣ = t.

Wir betrachten nun das Mengensystem R′ mit Grundmenge {+1,−1}k in der jede Menge
definiert ist durch eine Funktion f ∈ C mit

rf =
{

(y1, . . . , yk) ∈ {+1,−1}k
∣∣∣ f(y1, . . . , yk) = 1

}

Betrachten wir dieses Mengensystem genauer, dann stellen wir fest, dass es sich um ein Men-
gensystem von Halbräumen in Rk, beschränkt auf die Grundmenge {+1,−1}k, handelt.

Insbesondere ist f definiert durch α1, . . . , αk ∈ R mit

f(y1, . . . , yk) =

{
1 falls

∑
1≤i≤k αiyi ≥ 0

−1 sonst

Für w = (α1, . . . , αk) und u = 0, sowie y = (y1, . . . , yk) ist also

y ∈ rf ⇔ 〈w,y〉 ≥ u

Das heißt, rf enthält genau solche y ∈ {+1,−1}k die in dem Halbraum liegen, der durch w und
u definiert ist. Da die VC-Dimension von Halbräumen in Rk gleich k ist, erhalten wir mit dem
Wachstumslemma

∣∣R′|B
∣∣ ≤ ΠR′(t) ≤

(
et

k

)k

Diese Erkenntnis können wir nun verwenden um eine obere Schranke für die Anzahl der
verschiedenen Mengen r ∩ A mit r ∈ RC herzuleiten. Indem wir k verschiedene Hypothesen
aus H auswählen, können wir höchstens (ΠH(t))k verschiedene Mengen B erzeugen. Jede solche
Menge B entspricht einer Art, den Elementen in A jeweils k Labels aus {+1,−1} zuzuweisen.
Nun können wir für jede solche Menge B eine Funktion f auswählen. Für eine feste Menge B
können wir dadurch höchstens ΠR′(t) verschiedene Mengen erzeugen. Also erhalten wir

∣∣RC |A
∣∣ ≤ (ΠH(t))k ΠR′(t) ≤

(
et

d

)dk (et

k

)k

≤ t(d+1)k (3)

wobei wir nutzen, dass k ≥ 3 ≥ e und d ≥ 3 ≥ e. Nun können wir wieder Lemma 15.6 benutzen
und erhalten

t ≤ 4(d + 1)k ln(2(d + 1)k)

Referenzen

• Understanding Machine Learning, Kapitel 10.3 (VC-Dimension of Boosting)
• Foundations of Machine Learning, Kapitel 7.3 (VC-Dimension of Boosting)
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Entscheidungsbäume

Anne Driemel Letzte Aktualisierung: 22. Juni 2020

Entscheidungsbäume sind eine beliebte Form um eine Klassifizierung anhand eine Reihe
von Tests darzustellen. Damit kann zum Beispiel auf kompakte Weise dargestellt werden, ob
eine Person, die eine bestimmte Kombination von Krankheitssymptomen vorweist, einen Arzt
aufsuchen sollte oder sich in häusliche Quarantäne begeben sollte.1 Entscheidungsbäume wer-
den in der Praxis oft per Hand von einem Experten erstellt, zum Beispiel im Rahmen einer
Risikoanalyse.

Im Maschinellen Lernen werden Entscheidungsbäume genutzt um komplexe Kompositionen
von einfachen Hypothesen darzustellen. Oft wird als Basis die Klasse der Schwellenwertfunktio-
nen genutzt, also Halbräume die durch achsenparallele Hyperebenen beschränkt sind. Denkbar
sind aber auch beliebige Halbräume als Basis.

x1

x2

a1

a2

a5

a3

a4

x1 ≥ a1

x2 ≥ a2 x2 ≥ a3

x2 ≥ a5x1 ≥ a4
R1 R2

R3 R4 R5 R6 R4R3

R6

R5R2

R1

janein

x

Abbildung 1: Beispiel für die rekursive Partitionierung der Grundmenge [0, 1]2 durch einen
Entscheidungsbaum mit der Klasse der Schwellenwertfunktion als Basisklasse.

Diese Funktionen werden nun in Form eines binären Baumes rekursiv miteinander kombi-
niert. Als Ergebnis entsteht eine rekursive Partitionierung der Grundmenge. Jedem Blattknoten
ist das Label einer Klasse zugewiesen. Um einen Punkt der Grundmenge zu klassifizieren, folgt
man einem Pfad von der Wurzel bis zu dem Blatt, das den Punkt x enthält und gibt dann das
entsprechende Label aus. Siehe Abbildung 1 für ein Beispiel einer Partitionierung für den Fall,
dass die Grundmenge [0, 1]2 ist.

Der Vorteil einer achsenparallelen Partitionierung gegenüber einer Partitionierung mit Halb-
räumen, ist, dass jeder Knoten des Entscheidungsbaumes einem Test bezüglich einer festen
Komponente des Feature-Vektors darstellt. Zum Beispiel könnte eine bestimmte Komponente
darstellen ob und wie stark ein bestimmtes Krankheitssymptom bei einer Person aufgetreten ist.
Somit ist die vom Lernalgorithmus berechnete Hypothese von Menschen besser interpretierbar.
Daher werden Schwellwertfunktionen auch im Maschinellen Lernen in der Praxis manchmal
gegenüber allgemeinen Halbräumen bevorzugt.

1Siehe hier für das Corona-Virus
https://www.zeit.de/wissen/gesundheit/2020-03/Coronavirus-Entscheidungshilfe-2020-03-31.pdf
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1 Hypothesenklasse

Formal kann man die resultierende Hypothese wie folgt definieren. Sei T ein binärer Baum mit
k inneren Knoten und Wurzel w, wobei jedem inneren Knoten v eine Hypothese hv ∈ H und
jedem Blattknoten v ein Label `v ∈ {+1,−1} zugewiesen ist. Sei v ein innerer Knoten und sei
vL das linke Kind von v in T und sei vR das rechte Kind von v in T . Definiere die Funktion
gv : X → {+1,−1} für einen inneren Knoten v mit

gv(x) =

{
gvR(x) falls hv(x) = 1

gvL(x) sonst
(1)

Falls v ein Blattknoten ist, dann definieren wir gv(x) = `v.
Die Hypothese gw, definiert durch den Baum T und den assoziierten Hypothesen an den

inneren Knoten sowie den Labelzuweisungen an den Blättern von T , stellt dann einen Ent-
scheidungsbaum mit Basisklasse H dar. Dies ist eine Komposition, ähnlich wie wir sie in der
letzten Vorlesung definiert haben, wobei der Baum T die Kompositionsfunktion definiert. Der
einzige Unterschied ist, dass wir zusätzlich zu der Basisklasse auch die Labelzuweisungen an
den Blättern haben.

Definition 16.1. Sei Bk die Menge der gewurzelten binären Bäume mit k inneren Knoten und
k + 1 Blättern, wobei jeder innere Knoten v ein linkes Kind vL und ein rechtes Kind vR hat,
und genau einen Elternknoten.

Definition 16.2 (Entscheidungsbaum). Sei H eine Hypothesenklassen mit Grundmenge X und
sei R das zugehörige Mengensystem. Sei HBk

die Hypothesenklasse aller Funktionen gw : X →
{+1,−1} definiert wie in (1) durch

(i) einen binären Baum T ∈ Bk mit inneren Knoten v1, . . . , vk und Blättern b1, . . . bk+1,
(ii) Hypothesen h1, . . . , hk ∈ H und Labels `1, . . . `k+1 ∈ {+1,−1}

Wir legen dabei fest, dass w = v1 die Wurzel des Baumes T ist und dass, für 1 ≤ i ≤ k, die
Hypothese hi dem inneren Knoten vi zugewiesen ist, sowie dass, für 1 ≤ i ≤ k+ 1, das Label `i
dem Blatt bi zugewiesen ist.

Das folgende Lemma wird uns helfen, eine obere Schranke für die VC-Dimension der Hypo-
thesenklasse der Entscheidungsbäume mit k inneren Knoten zu zeigen.

Lemma 16.3. Für jede natürliche Zahl k ≥ 1 ist
∣∣Bk

∣∣ ≤ k!

Beweis. Wir zeigen dies durch Induktion. Sei k = 1. In diesem Fall gibt es nur einen Baum in
Bk, nämlich die Wurzel selbst mit zwei Blättern. Also ist

∣∣B1

∣∣ = 1 = 1! korrekt.
Sei k > 1. Wir können jeden Baum T ∈ Bk aus einem Baum T ′ ∈ Bk−1 erzeugen, indem wir

in T ′ einen Blattknoten entfernen und an derselben Stelle einen Knoten mit zwei neuen Blatt-
knoten als Kindern hinzufügen. Tatsächlich hat der so erzeugte Baum k innere Knoten und k+1
Blattknoten (ein Blattknoten wurde entfernt und zwei neue Blattknoten sind hinzugekommen).
Die Eigenschaft, dass jeder innere Knoten zwei Kinder hat bleibt dadurch gleichermaßen un-
berührt.

Für einen festen Baum T ′ ∈ Bk−1 gibt es genau k verschiedenen Möglichkeiten solch einen
Baum in Bk zu erzeugen, da T ′ genau k Blattknoten hat. Also ist∣∣Bk

∣∣ ≤ k ·
∣∣Bk−1

∣∣

Nun können wir die Induktionsannahme für
∣∣Bk−1

∣∣ einsetzen und erhalten
∣∣Bk

∣∣ ≤ k ·
∣∣Bk−1

∣∣ ≤ k · (k − 1)! ≤ k!

(Es kann passieren, dass der gleiche Baum in Bk durch zwei verschiedene Bäume in Bk−1
erzeugt wird, aber das stört uns nicht, da wir nur eine obere Schranke zeigen wollen.)
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2 VC-Dimension

Satz 16.4. Sei H eine Hypothesenklasse mit Grundmenge X und VC-Dimension d mit d <∞.
Sei k ≥ 2 eine natürliche Zahl. Die VC-Dimension von HBk

ist höchstens 20dk ln(10k).

Beweis. Wir nutzen einen ähnlichen Beweis wie in der letzten Vorlesung. Diesmal müssen wir
die Anzahl der verschiedenen Kompositionsfunktionen miteinbeziehen, die durch verschiedene
Bäume in Bk entstehen können.

Sei A ⊆ X eine Menge, die von HBk
aufgespalten wird und sei t =

∣∣A
∣∣. Wir wollen wieder

eine obere Schranke für die Anzahl Hypothesen in HBk
|A finden, und nutzen, dass 2t ≤

∣∣HBk
|A
∣∣.

Laut Lemma 16.3 gibt es höchstens k! verschiedene Bäume in Bk. Weiter müssen wir k
Hypothesen aus H|A auswählen. Für die Zuweisung der Labels an die k+ 1 Blätter des Baumes
gibt es 2k+1 Möglichkeiten. Damit wäre eine Hypothese in HBk

|A eindeutig identifiziert.
Wir können also die Anzahl der Hypothesen in HBk

|A abschätzen indem wir die Anzahl
der verschiedenen Bäume, die Anzahl der verschiedenen Label-Zuweisungen an die Blätter und
die Anzahl der Möglichkeiten, k Hypothesen an die inneren Knoten zuzuweisen, miteinander
multiplizieren. Es ergibt sich also

∣∣HBk
|A
∣∣ ≤ k! · 2k+1 ·

∣∣H|A
∣∣k ≤ k! · 2k+1 · (ΠH(t))k ≤ k! · 2k+1 ·

(
et

d

)dk

wobei die letzte Ungleichung wieder aus dem Wachstumslemma folgt. Da alle 2t verschiedenen
Teilmengen von A dargestellt werden, ergibt sich ähnlich wie zuvor, dass

2t ≤ k! · 2k+1 ·
(

et

d

)dk

≤ kk · kk+1 ·
(
t

d

)2dk

≤
(
t

d

)k+k+1+2dk

≤
(
t

d

)5dk

wobei wir hier annehmen, dass t ≥ de, und dass t ≥ dk, sonst ist die Aussage trivial erfüllt.
Wir können nun beide Seiten logarithmieren und erhalten

t ln 2 ≤ 5dk ln t
d

Da 0.5 ≤ ln 2, ist also

t

d
≤ 10k ln t

d

In Lemma 15.6 hatten wir gezeigt, dass für jedes x > 0 und u ∈ R gilt

x ≤ u lnx =⇒ x ≤ 2u lnu

Das können wir nun mit x = t
d und u = 10dk anwenden und erhalten

t ≤ 20dk ln(10k)

Da dies für jede Menge A gilt, die aufgespalten wird, folgt direkt die obere Schranke für die
VC-Dimension.

Satz 16.4 besagt, dass die VC-Dimension von Entscheidungsbäumen nur von der Anzahl der
inneren Knoten k und von der VC-Dimension der Basisklasse abhängt. Gleichzeitig kann man
für jede Menge S ⊆ R der Größe m einen Entscheidungsbaum mit k = m − 1 inneren Knoten
finden, der Trainingsfehler null hat. Das heißt, für k → ∞ ist die VC-Dimension von HBk

im
schlimmsten Fall unbeschränkt.
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3 Lernalgorithmen

Da bei Entscheidungsbäumen, ähnlich wie beim Boosting, die VC-Dimension mit der Komple-
xität der Hypothesenklasse steigt, besteht auch hier die Gefahr des Overfittings. Aus diesem
Grund will man in der Praxis die Anzahl der inneren Knoten des Baumes beschränken.

Das ist aber oft nicht effizient möglich. Es ist zum Beispiel NP-schwer für eine gegebene
Menge S ⊆ R3×{+1,−1} und einen Parameter k ∈ N einen optimalen Entscheidungsbaum mit
k inneren Knoten zu finden, wenn als Basisklasse die Klasse der Halbräume angenommen wird.
Das gilt selbst in dem vergleichsweise einfachen Fall, dass die Labels aus der Menge {+1,−1}
kommen und die Dimension der Grundmenge d = 3 ist.

Daher werden in der Praxis Entscheidungsbäume meist heuristisch optimiert, indem die
Knoten nacheinander hinzugefügt werden, wobei in jedem Schritt die Zielfunktion lokal op-
timiert wird. Der Algorithmus muss lokal entscheiden, welcher Knoten hinzugefügt wird und
nimmt meist den Knoten, dessen assoziierte Trainingsmenge den größten Trainingsfehler hat.
Denkbar ist auch, erst einen größeren Baum zu bauen und dann heuristisch Unterbäume zu
entfernen. Das Problem dabei ist aber, dass selbst die erste Hypothese im Wurzelknoten die
optimale Lösung blockieren kann.

3.1 Greedy-Algorithmus

Wir wollen trotzdem eine einfache Variante dieses Greedy-Algorithmus genauer definieren. Der
Algorithmus bekommt als Eingabe einen Parameter k und eine Datenpunkt/Label-Menge S =
((x1, y1), . . . , (xm, ym)). Jeder Blattknoten v hat eine assoziierte Menge Sv ⊆ S, welche nur für
die Konstruktion des Baumes verwendet wird.

decisionTree(k,S)
1. Initialisiere T mit einem Blattknoten v
2. initLeaf(v,S)
3. for i in 1 . . . k do
4. Finde Blattknoten v in T mit größtem Klassifizierungsfehler errSv(T )
5. split(v, T )
6. for v in Menge der Blattknoten von T do
7. Entferne die Menge Sv von dem Blattknoten v
8. Gebe den Baum T zurück

split(v,T)
1. Berechne eine Hypothese h ∈ H, welche errSv(h) minimiert
2. Assoziiere mit v die Hypothese h
3. Entferne die Menge Sv von v
4. Füge vL als linkes Kind von v zu T hinzu
5. Sei SvL = { (x, y) ∈ Sv | h(x) = −1 }
6. initLeaf(vL, SvL)
7. Füge vR als rechtes Kind von v zu T hinzu
8. Sei SvR = { (x, y) ∈ Sv | h(x) = +1 }
9. initLeaf(vL, SvL)
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initLeaf(v,S)
1. Assoziiere mit v die Menge S
2. Assoziiere mit v das Label welches unter den Punkten in Sv am meisten vertreten ist

3.2 Random-Forest-Algorithmus

Um die Stabilität des Lernalgorithmus zu verbessen, werden Entscheidungsbäume oft auf zufällig
gewählten Untermengen der Trainingsmenge heuristisch berechnet und die entstandenen Hypo-
thesen mit zufällig gewählten Gewichten kombiniert. Dieser Lernalgorithmus wird als Random-
Forest-Algorithmus bezeichnet. Die VC-Dimension kann hier wieder durch die Linearkombina-
tion der einzelnen Hypothesen wachsen. Allerdings tritt bei Random Forests das Phänomen des
Overfittings in der Praxis fast nie auf.

Referenzen

• Understanding Machine Learning, Kapitel 18 (Decision Trees)
• Foundations of Machine Learning, Kapitel 9.3.3 (Decision Trees)
• Michael T. Goodrich , Vincent Mirelli , Mark Orletsky , Jeffery Salowe, “Decision Tree

Construction in Fixed Dimensions: Being Global is Hard but Local Greed is Good” Tech-
nical Report TR-95-1, Johns Hopkins University, 1995.
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Nächste Nachbarn

Anne Driemel Letzte Aktualisierung: 25. Juni 2020

Ein grundlegender Lernalgorithmus im Maschinellen Lernen ist der Nächste-Nachbarn-Algo-
rithmus. Die Idee ist sehr einfach. Um einen Punkt q ∈ X auf Basis einer Trainingsmenge
S ⊆ X × {−1,+1} zu klassifizieren, berechnen wir den Punkt in S, der q am ähnlichsten
ist und geben das entsprechende Label zurück. Dafür müssen wir die Ähnlichkeit zunächst
definieren. Einfacher ist es meist, den Punkt zu betrachten, der den geringsten Abstand unter
einem bestimmten Distanzmaß hat. Wir betrachten hier zunächst den Euklidischen Abstand.
Unsere Hypothese ist also die folgende Funktion hS : X → {+1,−1} definiert durch

hS(x) = yi mit i = arg min
1≤i≤m

‖x− xi‖

In diesem Kontext bezeichnen wir xi als den nächsten Nachbarn von x in S.
Diese einfache Variante der Nächste-Nachbarn Hypothese leidet unter dem Problem des

Overfittings. Um dem entgegen zu wirken, werden oft die Labels der k nächsten Nachbarn
betrachtet, wobei k ∈ N ein Parameter ist. Formal können wir die resultierende Hypothese wie
folgt definieren. Für ein x ∈ X sei πx : {1, . . . ,m} → {1, . . . ,m} eine Bijektion der Menge S auf
sich selbst, sodass für alle i, j ∈ {1, . . . ,m} gilt

πx(i) ≤ πx(j) =⇒ ‖x− xi‖ ≤ ‖x− xj‖

Das heißt, πx stellt eine Permutation der Menge S dar, welche einer aufsteigend sortierten
Reihenfolge bezüglich des Abstands zu x entspricht. 1

Sei Nk(x) die Indexmenge der k nächsten Nachbarn von x in S. Formal,

Nk(x) =
{
π−1x (i)

∣∣ 1 ≤ i ≤ k
}

Die k-NN Hypothese ist die Funktion hS,k : X → {+1,−1} definiert durch

hS,k(x) = arg max
`∈{+1,−1}

∣∣ { j ∈ Nk(x) | yj = ` }
∣∣

Wir bezeichnen das algorithmische Problem, die k nächsten Nachbarn in einer Menge zu
finden als das k-NN Problem.

Obwohl wir immer noch von Hypothesen sprechen, macht es hier keinen Sinn, die VC-
Dimension der entsprechenden Hypothesenklasse zu betrachten. Wir würden dann feststellen,
dass die VC-Dimension von der Größe von S abhängt und hätten dann keine Möglichkeit mehr,
im Rahmen des PAC-Frameworks, die minimale Größe von S anhand der VC-Dimension festzu-
legen. Nichtsdestotrotz bildet die Klasse der Lernalgorithmen, die auf dem Prinzip der nächsten
Nachbarn basiert, eine grundlegende Methode im Maschinellen Lernen.

1Beachte, dass πx dadurch noch nicht eindeutig definiert ist, da es nicht für jedes x eine eindeutige Permutation
der nächsten Nachbarn gibt. Wir definieren deshalb ausserdem die folgende Bedingung, welche die Permutation
eindeutig macht.

πx(i) < πx(j) und ‖x− xi‖ = ‖x− xj‖ =⇒ i < j
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1 Voronoi-Diagramme

Für eine feste Menge S lässt sich die Hypothese hS (bzw. hS,k) durch ein sogenanntes Voronoi-
Diagram darstellen. Bei der Hypothese hS,k sprechen wir dann von einem Voronoi-Diagramm
der k-ten Ordnung.

Definition 17.1. Sei S ⊆ Rd mit |S| = m. Sei k ≤ m eine natürliche Zahl. Die Voronoi-Region
einer Menge A ⊆ {1, . . . ,m} mit |A| = k ist die Menge

Vk(A) =
{
x ∈ Rd

∣∣∣ Nk(x) = A
}

Das Voronoi-Diagramm ist die Unterteilung des Raumes Rd in die Voronoi-Regionen für alle
A ⊆ {1, . . . ,m} mit |A| = k.

Das Voronoi-Diagram ist also die Unterteilung der Grundmenge in genau die Regionen, für
die die Ausgabe des k-NN Problems gleich ist. Jede Strukturierung der Trainingsmenge, die
einen effiziente Beantwortung der Frage nach den k nächsten Nachbarn von einem Anfrage-
punkt x erlaubt, beantwortet implizit die Frage, in welcher Voronoi-Region sich x befindet. Wir
interessieren uns deshalb für die Struktur des Voronoi-Diagramms und insbesondere die Kom-
plexität des Diagramms. Wir werden feststellen, dass das Voronoi-Diagram für k = 1 und d = 2
eine überraschend einfache Struktur hat.

1.1 k-NN auf der Geraden

Für d = 1 betrachten wir das arithmetische Mittel zwischen zwei Punkten der Trainingsmenge,
bi,j =

xi+xj

2 . Der Wert bi,j unterteilt die Grundmenge in zwei disjunkte Intervalle

I− = (−∞, bi,j) und I+ = (bi,j ,∞)

Dabei gilt für ein beliebiges Paar von Punkten x, x′ ∈ R \ {bi,j}, dass sie genau dann demselben
Intervall angehören, wenn sie in der Menge {xi, xj} denselben nächsten Nachbarn haben.

Allgemeiner, können wir die Werte bi,j der Menge
(
S
2

)
betrachten, also der Menge aller

Punktepaare aus S. Diese unterteilen die Grundmenge R in eine beschränkte Anzahl von Inter-
vallen, sodass in jedem Intervall die Permutation πx für alle Punkte x in dem Intervall gleich ist.
Im Voronoi-Diagram der k-ten Ordnung fassen wir all jene Intervalle zu einer Menge zusammen,
bei der die k nächsten Nachbarn, also die Menge Nk(x), gleich sind.

Beispiel 17.2. Sei k = 2 und seien x1, x2, x3, x4 ∈ R wie folgt

x1 x2 x3 x4

b1,2 b1,3 b2,3 b1,4 b2,4 b3,4

V2({x1, x2}) V2({x2, x3}) V2({x3, x4})

Für k = 2 haben wir in diesem Beispiel die folgenden nicht-leeren Voronoi-Regionen:
V2({x1, x2}) = (−∞, b1,3] V2({x2, x3}) = (b1,3, b2,4] V2({x3, x4}) = (b2,4,∞).

Man kann zeigen, dass das Voronoi-Diagramm von m Punkten in R aus genau m − k + 1
nicht-leeren Voronoi-Regionen besteht, die jeweils ein zusammenhängendes Intervall bilden. Es
hat also höchstens lineare Komplexität. Für d = 2 kann man allerdings Punktmengen finden, für



AGML, Sommersemester 2020 Vorlesung 17 (Seite 3 von 7)

xi,j

ai ai+k−j

bj

a1, . . . , an−k+1

b1, . . . , bk−1

Abbildung 1: Es gibt Punktmengen mit mindestens (k − 1)(m − 2k) nicht-leeren Voronoi-
Regionen in der Ebene.

die das Voronoi-Diagramm der k-ten Ordnung mindestens (m− 2k)(k− 1) nicht-leere Voronoi-
Regionen enthält. Es hat also im schlimmsten Fall mindestens quadratische Komplexität. Im
Beispiel in Abbildung 1 gibt es Punkte a1, . . . , am−k+1 auf der x-Achse und k−1 Punkte auf der
y-Achse, die so gewählt sind, dass für jede Koembination von Indizes (i, j) ∈ {1, . . . ,m− 2k}×
{1, . . . , k − 1} ein Kreis existiert, der genau die Punkte Ai,j = {b1, . . . , bj} ∪ {ai, . . . , ai+k−j}
enthält. Der Mittelpunkt dieses Kreises ist also enthalten in der Voronoi-Region Vk(Ai,j). Das
bedeutet, dass diese Voronoi-Region nicht leer ist. Also gibt es mindestens (m − 2k)(k − 1)
nicht-leere Voronoi-Regionen.

1.2 1-NN in der Ebene

Für den Fall k = 1 hat das Voronoi-Diagram eine überraschend einfache geometrische Struktur.
Die Punkte bi,j , an denen sich die Permutation der nächsten Nachbarn für d = 1 ändert, können
wir verallgemeinern zu dem Bisektor, der wie folgt definiert ist.

Definition 17.3. Der Bisektor B(p, q) zwischen zwei Punkten p ∈ Rd und q ∈ Rd ist die Menge

B(p, q) =
{
x ∈ Rd

∣∣∣ ‖p− x‖ = ‖q − x‖
}

Der Bisektor enthält alle Punkte, für die der Abstand zum Punkt p und der Abstand zum
Punkt q genau gleich ist. Für feste p und q ist der Bisektor eine Hyperebene, wie sich leicht
überprüfen lässt:

‖p− x‖ = ‖q − x‖
⇔ ‖p− x‖2 = ‖q − x‖2
⇔ 〈p− x, p− x〉 = 〈q − x, q − x〉
⇔ 〈p, p〉+ 〈x, x〉 − 2 〈p, x〉 = 〈q, q〉+ 〈x, x〉 − 2 〈q, x〉
⇔ 〈p, p〉 − 2 〈p, x〉 = 〈q, q〉 − 2 〈q, x〉
⇔ 2 〈q, x〉 − 2 〈p, x〉 = 〈q, q〉 − 〈p, p〉
⇔ 〈2(q − p), x〉 = 〈q, q〉 − 〈p, p〉
⇔ 〈wp,q, x〉 = up,q
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Abbildung 2: Im Kasten sieht man ein Aussschnitt des Voronoi-Diagramms der schwarzen Punk-
te (k = 1). Der blaue Knoten ist der virtuelle Knoten, der alle unbeschränkten Kanten verbindet.
Die lila Kanten sind Kanten des dualen Graphen.

mit wp,q = 2(q − p) ∈ Rd und up,q = 〈q, q〉 − 〈p, p〉 ∈ R.
Der Bisektor unterteilt die Grundmenge in zwei offene Halbräume.

H−(p, q) =
{
x ∈ Rd

∣∣∣ 〈wp,q, x〉 < up,q

}
und H+(p, q) =

{
x ∈ Rd

∣∣∣ 〈wp,q, x〉 > up,q

}

Dabei gilt für ein beliebiges Paar von Punkten x, x′ ∈ Rd\B(p, q), dass sie genau dann demselben
Halbraum angehören, wenn sie in der Menge {p, q} denselben eindeutigen nächsten Nachbarn
haben.

Die Voronoi-Region eines Punktes xi in der Menge S = {x1, . . . , xm} ist die Menge der
Punkte, für die xi der eindeutige nächste Nachbar ist.2

V1(xi) =
⋂

1≤j≤m
i6=j

H−(xi, xj)

Die Voronoi-Region ist also eine zusammenhängende Menge. Das folgt direkt aus der Konve-
xität der Halbräume und daraus, dass die Konvexität von Mengen unter endlichen Schnitten
abgeschlossen ist.

Die Grenzen der Voronoi-Regionen bestehen aus Teilen der Bisektoren. In der Ebene formen
diese zusammen einen Graphen mit Knoten und Kanten. Jeder Punkt auf einer Kante hat dabei
den gleichen Abstand zu seinen zwei nächste Nachbarn. Jeder Punkt auf einem Knoten hat den
gleichen Abstand zu seinen drei nächsten Nachbarn. Wir können die Anzahl der Knoten und
Kanten im Voronoi-Diagramm wie folgt beschränken.

Satz 17.4. Das Voronoi-Diagramm von m Punkten in R2 hat O(m) Knoten und Kanten.

2Mathematisch ist das nicht ganz korrekt, da wir die Voronoi-Regionen etwas anders definiert haben. Die
Mengen unterscheiden sich aber nur am Rand. Wir sehen darüber um einer einfacheren Definition willen hinweg.
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Beweis. Wir nutzen Eulers Formel für planare Graphen. Für einen Graphen G mit v Knoten,
e Kanten und f Flächen besagt sie, dass

v − e+ f = 2

Wir wollen diese Formel auf den Graphen der die Voronoi-Regionen begrenzt anwenden. Dafür
müssen wir einen virtuellen Knoten hinzufügen, der mit allen unbeschränkten Kanten verbun-
den ist.3 Wir wissen, dass f = m, da f die Flächen des Graphen mit den Voronoi-Regionen
korrespondieren. Sei di die Anzahl der Kanten, die inzident zum iten Voronoi-Knoten sind. Wir
können die Summe der Knotengrade auf zwei Arten begrenzten,

2e =

v∑

i=1

di ≥ 3v

da jede Voronoi-Kante zu genau 2 Voronoi-Knoten inzident ist, und da jeder Voronoi-Knoten
zu mindestens zu 3 Voronoi-Kanten inzident ist. Wir nehmen hier an, dass m > 2, sonst ist die
Aussage im Satz trivial erfüllt. Daraus folgt v ≤ 2

3e und daher folgt aus Eulers Formel

e = f + v − 2 ≤ m+
2

3
e− 2

Dies können wir umformen zu
e ≤ 3(m− 2)

Also ist e ∈ O(m). Daraus folgt auch, da v ≤ 2
3e, dass v ∈ O(m).

1.3 k-NN in der Ebene

Für k > 1 können wir und das Voronoi Diagram höherer Ordnung wie folgt vorstellen. Für jede
Region V1(xi) im Voronoi-Diagram von S betrachten wir das Voronoi-Diagram von S \ {xi}
beschränkt auf die Region V1(xi). Das gibt uns die Regionen V2({xi, xj})∩V1(xi) für alle i 6= j.
Das können wir rekursiv fortführen um weitere Voronoi-Diagramme höherer Ordnung für k > 2
zu finden. Allgemein kann man beobachten, dass die Voronoi-Regionen höherer Ordnung immer

von Teilen der Bisektoren der Menge
(
S
2

)
begrenzt werden. Insbesondere teilen die Bisektoren

die Ebene in Regionen, sodass in jeder Region die Permutation der nächsten Nachbarn gleich
ist.

1.4 Voronoi-Diagramme in höheren Dimensionen

In höheren Dimension steigt die Komplexität des Voronoi-Diagramms exponentiell mit der
Dimension. Für d = 3 kann das Voronoi-Diagram schon quadratische Größe haben. Dafür
konstruieren wir zwei windschiefe Geraden gA und gB, also zwei Geraden die nicht in derselben
Ebene liegen. Sei A = {a1, . . . , an} eine Menge von n = dm2 e Punkten auf gA und sei B =
{b1, . . . , b′n} eine Menge von n′ = bm2 c Punkten auf gB. Wir nehmen an, dass zwischen zwei
Punkten ai und ai+1 kein weiterer Punkt aus A auf gA liegt, und ähnlich nehmen wir an, dass
zwischen zwei Punkten bi und bi+1 kein weiterer Punkt aus B auf gB liegt. Nun können wir für
jedes Tupel (i, j) ∈ {1, . . . , n−1}×{1, . . . , n′−1} die Kugel betrachten, die ai, ai+1, bj und bj+1

auf dem Rand hat. Da die beiden Geraden windschief sind, liegen die vier Punkte nicht in einer
Ebene und bestimmen somit eindeutig eine Kugel. Die Kugel enthält keine weiteren Punkte aus
A ∪ B. Daher ist das Zentrum der Kugel ein Knoten im Voronoi-Diagram von A ∪ B. Daraus
folgt, dass das Voronoi-Diagramm mindestens (n− 1)(n′ − 1) ∈ Ω(m2) Knoten hat.

3Wir könnten stattdessen auch den dualen Graphen betrachten, welcher auch ein planarer Graph ist. Dieser
ist in Abbildung 2 abgebildet. Der virtuelle Knoten entspricht dann der äußeren Fläche.
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Abbildung 3: Links: Voronoi-Diagramm der zweiten Ordnung für die Punktmenge aus Abbil-
dung 2; Rechts: Voronoi-Diagramme für k = 1 und k = 2 übereinander gezeichnet.

gA

gB
ai

ai+1

bj
bj+1

Abbildung 4: Beispiel einer Konstruktion einer Menge von m Punkten in R3 mit mindestens
Ω(n2) vielen Voronoi-Knoten.
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Allgemein, im Rd ist die Anzahl der Knoten des Voronoi-Diagramms von m Punkten in

Θ(md
d
2
e) im schlimmsten Fall. Die Komplexität von Voronoi-Diagrammen höherer Ordnung im

Rd ist nicht genau bekannt. Es ist aber zu vermuten, dass diese noch höher ist, als für k = 1.
Aus diesem Grund werden in höheren Dimensionen die k nächsten Nachbarn nicht durch

die explizite Berechnung und Vorverarbeitung des Voronoi-Diagramms bestimmt. Alternativ
können alle Abstände zu der Menge S explizit berechnet werden, was eine lange Klassifizierungs-
laufzeit hat. Eine andere Möglichkeit ist es, die nächsten Nachbarn approximativ zu bestimmen.
Damit werden wir uns in der nächsten Vorlesung beschäftigen.

Referenzen

• Understanding Machine Learning, Kapitel 19.
• Rolf Klein, Algorithmische Geometrie, Springer, 1996, (Kapitel 5).
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Approximative Nächste Nachbarn

Anne Driemel Letzte Aktualisierung: 1. Juli 2020

In der letzten Vorlesung ging es um eine Klasse von Lernalgorithmen, die auf dem Prinzip
der nächsten Nachbarn basiert. Zur Erinnerung, die grundlegende Variante dieser Lernalgo-
rithms nutzt die folgende Hypothese hS : X → {+1,−1} definiert für eine Trainingsmenge
S = {(x1, y1), . . . , (xm, ym)} ∈ Rd × {−1,+1} durch

hS(x) = yi mit i = arg min
1≤i≤m

d(x, xi),

wobei d : X ×X → R≥0 eine Abstandsfunktion definiert. Wir bezeichnen xi als den nächsten
Nachbarn von x in S. Für den Euklidischen Abstand hatten wir das algorithmische Problem,
den nächsten Nachbarn zu bestimmen, mithilfe der Voronoi-Diagramme analysiert. Das Voronoi-
Diagramm beschreibt im Grunde die inverse Funktion der Hypothese hS . Da die Komplexität
eines Voronoi-Diagramms im schlimmsten Fall exponentiell mit der Dimension d wächst bieten
sie leider keine effiziente algorithmische Lösung des Problems an. Es bleibt uns scheinbar nur
die Möglichkeit, die Abstände zu allen m Elementen der Trainingsmenge zu berechnen, um die
Funktion hS an einem Punkt x zu evaluieren. Dies wird auch als lineare Suche bezeichnet, da
die Laufzeit in O(dm) ist.

Wir wollen heute eine approximative Variante dieses Problems betrachten. Das Ziel ist es, auf
der Menge S eine Datenstruktur zu berechnen, welche eine effizientere Klassifizierung zulässt,
also eine Klassifizierungslaufzeit besser als die der linearen Suche, wobei wir trotzdem noch dem
Prinzip der nächsten Nachbarn treu bleiben wollen.

1 Lokalitätssensitive Funktionen

Definition 18.1. Sei F eine Klasse von Funktionen der Form h : X → U , wobei auf U eine
Ordnungsrelation ≤ definiert ist, und sei d : X × X → R≥0 eine Abstandsfunktion. F ist
(r,R, α, β)-lokalitätssensitiv bezüglich der Funktion d, wenn für x, y ∈ X

Prh∈F [h(x) = h(y)] > α falls d(x, y) < r (1)

Prh∈F [h(x) = h(y)] < β falls d(x, y) > R (2)

Wir sagen, dass eine Klasse von Funktionen lokalitätssensitiv ist, wenn sie (r,R, α, β)-
lokalitätssensitiv ist für ein α > 0, ein β < 1 und r,R > 0 mit r ≤ R.

Idealerweise wollen wir, dass α möglichst groß ist, dass β möglichst klein ist und dass R/r
möglichst nah bei 1 ist. Die Intuition dahinter ist, dass zwei Punkte, die nah beieinander liegen
dann eine hohe Wahrscheinlichkeit haben, durch ein zufälliges h auf denselben Schlüssel abge-
bildet zu werden, während Punkte, die weit entfernt voneinander entfernt liegen eine niedrige
Wahrscheinlichkeit haben, durch ein zufälliges h auf denselben Schlüssel abgebildet zu werden.

Lokalitätssensitive Funktionen erlauben es uns, bekannte Suchstrukturen, wie zum Beispiel
Suchbäume, oder Hashing, auf das Nächste-Nachbarn-Problem in höheren Dimensionen anzu-
wenden. Sei D solch eine Suchstruktur. Wir können dann eine lokalitätssensitive Funktion h
zufällig aus der Klasse F wählen und die Schlüssel zi = h(xi) für jeden Punkt (xi, yi) ∈ S aus
der Trainingsmenge erzeugen. Die Datensätze (xi, yi) speichern wir dann mit dem zugehörigen
Schlüssel in der Suchstruktur D. Um den nächsten Nachbarn eines Punktes y ∈ X in S zu
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y
r

R

S

x

Abbildung 1: Schematische Darstellung der Unterteilung der Punktmenge S anhand der
Abstände zu y. Für die Punkte, deren Abstand zwischen r und R liegt, wird in Definition 18.1
kein Aussage gemacht. Sie fallen in den Bereich des Approximationsfehlers.

finden, erzeugen wir den Schlüssel z = h(y) und suchen in D nach z. Dafür ist es wichtig,
dass auf der Schlüsselmenge eine Ordnungsrelation existiert, die es erlaubt, die Schlüssel zu
sortieren. Beachte, dass die lokalitätssensitiven Funktionen hier nur eine Entscheidungsvarian-
te des Nächste-Nachbarn-Problems lösen, da die Abstandsparameter r und R fest sind. Für
den Euklidischen Abstand lässt sich dies durch Skalierung der Punktmenge auf alle anderen
Abstandsparameter erweitern.

Insgesamt erinnern lokalitätssensitive Funktionen stark an das Hashing. Sie sollten aber
nicht damit verwechselt werden. Beim Hashing geht es darum, ein Universum U auf eine kleine
Indexmenge {1, . . . ,m} abzubilden. Das Ziel ist, einen Datensatz (Teilmenge des Universums)
in einem Array der Größe m abzuspeichern und konstante Zugriffszeit auf die Elemente des
Datensatzes zu erreichen. Eine sogenannte Hash-Kollision tritt dann auf, wenn zwei verschie-
dene Elemente im Datensatz auf denselben Schlüssel abgebildet werden. Um mehrere Elemente
unter demselben Schlüssel zu speichern, können zusätzliche verkettete Listen verwendet werden.
Beim Hashing ist H also eine Menge von Funktionen h : U → {1, . . . ,m}. Beim sogenannten
uniformen Hashing gilt die folgende Annahme für jede zwei x, y ∈ U : Prh∈F [h(x) = h(y)] = 1

m .
Diese Annahme erlaubt es, die Auswirkungen von Hash-Kollisionen auf die Zugriffszeit zu be-
schränken. Hash-Kollisionen von nicht-identischen Elementen sollen vermieden werden, da sie
die Zugriffszeit verlängern. Bei lokalitätssensitiven Funktionen hingegen sind Hash-Kollisionen
sogar erwünscht, sofern sie vorrangig unter den nächsten Nachbarn auftreten. Oft werden beide
miteinander kombiniert, indem man erst eine lokalitätssensitive Funktion anwendet und dann
auf den so berechneten Schlüssel, eine Hashfunktion anwendet, um die Schlüsselmenge effizient
speichern zu können und darin effizient suchen zu können. Wir ignorieren diesen Aspekt hier
und beschränken uns auf die Analyse der lokalitätssensitiven Funktionen.

Definition 18.2. Sei X = R. Sei F die Klasse von Funktionen hη : X → Z mit hη(x) = dx+ηe,
und mit η ∈ [0, 1). Betrachte die Wahrscheinlichkeitsverteilung über F , bei der η gleichverteilt
im Intervall [0, 1) gewählt wird.

Lemma 18.3. Die Klasse F aus Definition 18.2 ist lokalitätssensitiv bezüglich des Euklidischen
Abstandes. Insbesondere gilt für jedes x, y ∈ X

Prhη∈F [hη(x) = hη(y)] = max (0, 1− |x− y|)
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Beweis. Wenn x = y, dann ist die Wahrscheinlichkeit dass x und y auf denselben Funktionswert
abgebildet werden gleich 1. Für |x− y| ≥ 1 werden x und y immer auf unterschiedliche Funkti-
onswerte abgebildet, egal welchen Wert η annimmt. Wir betrachten also den Fall |x− y| < 1.

Sei ohne Beschränkung der Allgemeinheit x ≤ y. Die Werte x und y werden genau dann nicht
auf denselben Funktionswert abgebildet, wenn in dem Intervall zwischen den Werten (x + η)
und (y + η) eine ganze Zahl liegt. Insbesondere gilt

hη(x) 6= hη(y) ⇔ dx+ ηe ∈ [x+ η, y + η)

Betrachten wir die Zufallsvariable τ definiert durch

τ = dx+ ηe − (x+ η)

Dann gilt nach obiger Betrachtung

hη(x) 6= hη(y) ⇔ τ ∈ [0, y − x) (3)

Welche Verteilung hat also die Zufallsvariable τ?
Eine wichtige Beobachtung ist, dass dx + ηe mit η ∈ [0, 1) nur zwei verschiedene Werte

annehmen kann, nämlich dx+ ηe ∈ {dxe, dx+ 1e}.
Wir betrachten eine weitere Zufallsvariable τ ′ = x+ η in den zwei Fällen.

(Fall 1) dτ ′e = dxe ⇒ τ ′ ∈ [x, dxe]

(Fall 2) dτ ′e = dx+ 1e ⇒ τ ′ ∈ (dxe, x+ 1)

Daraus ergibt sich für τ = dτ ′e − τ ′

(Fall 1) τ = dxe − τ ′

(Fall 2) τ = dx+ 1e − τ ′.

Es ergeben sich die folgenden Intervalle für Werte von τ in den beiden Fällen.

(Fall 1) τ ∈ [ddxee − dxe, dxe − x] = [0, dxe − x]

(Fall 2) τ ∈ (dx+ 1e − (x+ 1), dx+ 1e − dxe) = (dxe − x, 1)

Da η in [0, 1) gleichverteilt ist und daher τ ′ in [x, x + 1) gleichverteilt ist, schließen wir
daraus, dass τ ∈ [0, 1) gleichverteilt ist. Nun folgt aus (3), dass wenn |x− y| < 1 ist,

Prhη∈F [hη(x) 6= hη(y)] = |x− y|

Daraus folgt
Prhη∈F [hη(x) = hη(y)] = max (0, 1− |x− y|)

Sei t ∈ (0, 1) ein Parameter. Es folgt nun, dass die Klasse F aus Definition 18.2 (r,R, α, β)-
lokalitätssensitiv ist mit α = β = 1− t und r = R = t.

Wir wollen die Definition auf höhere Dimensionen erweitern. Dafür wählen wir zufällig eine
Gerade durch den Ursprung und projizieren die Punkte auf den eindimensionalen Unterraum
und wenden die Funktion aus Definition 18.2 auf den Unterraum an. Das geht am einfachsten
indem man einen Einheitsvektor zufällig gleichverteilt auf dem Einheitskreis wählt. Der Ein-
heitskreis S1 ist die Menge der Einheitsvektoren in R2. Formal, ist S1 = {x ∈ R2 | ‖x‖ = 1}
definiert. Wir können einen Vektor u zufällig gleichverteilt aus S1 auswählen indem wir einen
Winkel φ zufällig gleichverteilt im Interval [0, 2π) auswählen und u = (cosφ, sinφ) definieren.
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Definition 18.4. Sei X = R2. Sei F die Klasse von Funktionen hu,η : X → Z mit hu,η(x) =
d〈x, u〉 + ηe, und mit η ∈ [0, 1) und u ∈ S1. Betrachte die Wahrscheinlichkeitsverteilung über
F , bei der η gleichverteilt im Intervall [0, 1) gewählt wird und u = (cos(φ), sin(φ)), wobei φ
gleichverteilt im Intervall [0, 2π) gewählt wird.

Lemma 18.5. Die Klasse F aus Definition 18.4 ist (r,R, α, β)-lokalitätssensitiv bezüglich des
Euklidischen Abstandes mit r = 1

2 ,R = 2,α = 1
2 ,β = 1

3 .

Beweis. Zunächst stellen wir fest, dass

| 〈x, u〉 − 〈y, u〉 | = | 〈x− y, u〉 | = ‖x− y‖ · ‖u‖ · | cos θ| = ‖x− y‖ · | cos θ|,

wobei wir mit θ den Winkel zwischen den Vektoren u und (x− y) bezeichnen.
Wir betrachten beide Fälle aus der Definition der lokalitätssensitiven Funktionen. Sei 0 ≤

‖x − y‖ < 1
2 . In diesem Fall, gilt für die Wahrscheinlichkeit, dass x und y auf verschiedene

Funktionswerte abgebildet werden

Prhu,η∈F [hu,η(x) 6= hu,η(y)] = | 〈x, u〉 − 〈y, u〉 | = ‖x− y‖ · | cos θ| < 1

2

Also ist

Prhu,η∈F [hu,η(x) = hu,η(y)] >
1

2

Im zweiten Fall betrachten wir ‖x − y‖ > 2. Im Ereignis, dass x und y auf denselben
Funktionswert abgebildet werden, muss gelten

| 〈x, u〉 − 〈x, u〉 | < 1

Wir setzen ein und formen um und erhalten

1 > ‖x− y‖| cos θ| > 2| cos θ|

Daraus folgern wir, dass | cos θ| < 1
2 gelten muss, in dem Ereignis, dass x und y auf denselben

Funktionswert abgebildet werden. Der Vektor (x − y) ist fest und unabhängig von der Wahl
der lokalitätssensitiven Funktion hη,u mit u = (cosφ, sinφ). Insbesondere muss der Winkel θ
gleichverteilt in [0, π) sein, da φ gleichverteilt in [0, 2π) ist. Also ist

Prhu,η∈F [hu,η(x) = hu,η(y)] ≤ Pr

[
| cos θ| ≤ 1

2

]
= Pr

[
θ ∈

[
π

3
,
2π

3

]]
=

1

3

Die Analyse aus obigem Beweis funktioniert unter der Annahme, dass X = R2. Tatsächlich
kann man aber zeigen, dass eine ähnliche Klasse von Funktionen auch in höheren Dimensionen
lokalitätssensitiv bezüglich des Euklidischen Abstandes ist.

2 Verstärkung durch Komposition

In den obigen Funktionsklassen für den Euklidischen Abstand ist die Erfolgswahrscheinlichkeit
für zwei Punkte, die nah beieinander liegen, auf denselben Funktionswert abgebildet zu werden
noch nicht hoch genug für praktische Anwendungen. Es ist daher sinnvoll, die Wahrscheinlich-
keiten zu verstärken indem man eine Komposition von mehreren Funktionen benutzt.
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f(s) = sk f(s) = 1− (1− sk)L

Abbildung 2: Wahrscheinlichkeit für Hashkollisionen für feste x, y ∈ X bei Komposition, in
Abhängigkeit von s = Prh∈F [h(x) = h(y)]. Links: k-fache UND-Komposition; Rechts: k-fache
UND-Komposition gefolgt von L-facher ODER-Komposition.

Sei k eine natürliche Zahl. Sei F eine Klasse von (r,R, α, β)-lokalitätssensitiven Funktio-
nen. Eine k-fache UND-Komposition ist eine Funktion g : X → Uk definiert durch g(x) =
(h1(x), . . . , hk(x)) mit h1, . . . , hk ∈ F . Beachte, dass auf Uk eine Ordnungsrelation existiert,
sofern auf U eine Ordnungsrelation existiert, zum Beispiel können wir die lexikographische
Ordnung annehmen. Dies wird eine UND-Komposition genannt, da g(x) = g(y) voraussetzt,
dass hi(x) = hi(x) für alle 1 ≤ i ≤ k. Wir bezeichnen die resultierende Klasse von Funktionen
mit Fk.

Zusätzlich können wir eine ODER-Komposition betrachten. Dies ist eine Komposition der
resultierenden Datenstrukturen. Sei L eine natürliche Zahl. Seien g1, . . . , gL zufällig aus Fk
gewählt. Wir berechnen für jede Funktion gi den Schlüssel gi(x) für jedes x ∈ S der Trainings-
menge und fügen gi(x) in eine separate Datenstruktur Di ein. Bei einer Anfrage mit einem
Element y ∈ X berechnen wir den Schlüssel gi(y) und suchen mit diesem Schlüssel in den Da-
tenstrukturen D1, . . . , DL. Die Suche ist erfolgreich, wenn wir ein x ∈ S finden, mit d(x, y) ≤ R.
Angenommen es existiert ein x ∈ S mit d(x, y) < r. Was ist dann die Wahrscheinlichkeit, dass
gi(x) = gi(y) für mindestens eines der i ∈ {1, . . . , L}?

Lemma 18.6. Seien k, L ∈ N. Sei F eine Klasse von lokalitätssensitiven Funktionen auf einer
Grundmenge X. Sei (g1, . . . , gL) eine k-fache UND-Komposition gefolgt von einer L-fachen
ODER-Komposition mit k · L Funktionen unabhängig zufällig gewählt aus F . Dann gilt für
jedes x, y ∈ X

Pr [∃i ∈ {1, . . . , L} : gi(x) = gi(y)] = 1− (1− (Prh∈F [h(x) = h(y)])k)L

Beweis. Sei x, y ∈ X fest und sei s = Prh∈F [h(x) = h(y)]. Sei i ∈ {1, . . . , L} fest. Die Wahr-
scheinlichkeit, dass gi(x) = gi(y) ist sk, da die Funktionswerte von x und y für alle k Funktionen
gleich sein müssen. Betrachten wir nun das Ereignis, dass gi(x) 6= gi(y) für alle i ∈ {1, . . . , L}.
Die Wahrscheinlichkeit dafür ist (1− sk)L. Die Wahrscheinlichkeit im Satz ist die Gegenwahr-
scheinlichkeit dazu.

Beispiel 18.7. Betrachten wir die Klasse von Funktionen aus Definition 18.2 für den Euklidi-
schen Abstand in R. Seien x, y ∈ R fest und sei s = max (0, 1− |x− y|). Laut Lemma 18.3
ist s ist die Wahrscheinlichkeit, dass x und y auf denselben Funktionswert abgebildet wer-
den. Laut Lemma 18.6 ist die Wahrscheinlichkeit, dass gi(x) = gi(y) für mindestens eines der
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i ∈ {1, . . . , L} gleich 1 − (1 − sk)L. Abbildung 2 zeigt Beispiele von Funktionengraphen dieser
Funktion für verschiedene Werte von k und L.
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Zentrumsbasiertes Clustering

Anne Driemel Letzte Aktualisierung: 2. Juli 2020

Bis jetzt haben wir uns in der Vorlesung mit dem Lernen auf Basis von beschrifteten Trai-
ningsmengen S ⊆ X × {+1,−1} befasst. Dies wird auch als überwachtes Lernen bezeichnet, da
die Labels der Punkte der Trainingsmenge bekannt sind. Heute werden wir uns mit Algorithmen
zum unüberwachten Lernen befassen. Einem unüberwachten Lernalgorithmus ist eine Menge
S ⊆ X, also eine Teilmenge der Grundmenge gegeben, ohne Labels. Das Ziel ist es, die Menge S
in Gruppen aufzuteilen, sodass, innerhalb jeder einzelnen Gruppe, die Punkte möglichst ähnlich
zueinander sind. Solch eine Aufteilung in Gruppen wird als Clustering bezeichnet. Die einzelnen
Gruppen der Aufteilung werden Cluster genannt. Die Ähnlichkeit können wir wieder mithilfe
einer Abstandsfunktion formalisieren.

Definition 19.1. Sei X eine Menge und sei d : X × X → R≥0 eine Abstandsfunktion. Wir
bezeichnen d als eine Metrik auf X, wenn sie folgende Eigenschaften erfüllt:
(i) ∀x, y ∈ X : d(x, y) = 0⇔ x = y
(ii) ∀x, y ∈ X : d(x, y) = d(y, x)
(iii) ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z) (Dreiecksungleichung)

Die Qualität des Clusterings wird mithilfe einer Zielfunktion definiert. Wir betrachten heute
zwei verschiedene Zielfunktionen, die k-Center-Zielfunktion und die k-Means-Zielfunktion. Beide
Zielfunktionen sind zentrumsbasiert, sie betrachten die Abstände des Punkte eines Clusters zum
Zentrum des Clusters.

1 Gonzales Algorithmus

SeiX eine Grundmenge und sei d eine Metrik aufX. Das k-Center Problem ist, für eine gegebene
Menge S = {x1, . . . , xm} ⊆ X, und einen Parameter k ∈ N mit k ≤ m, eine Menge von Zentren
c1, . . . , ck ∈ X zu berechnen, welche die Zielfunktion

φcenter (c1, . . . , ck) = max
1≤i≤m

min
1≤j≤k

d(xi, cj)

minimiert.
Eine Lösung eines zentrumsbasierten Clusteringproblems ist durch eine feste Menge von k

Zentren hinreichend definiert. Jeder Eingabepunkt wird seinem nächsten Nachbarn in der Menge
der Zentren zugewiesen. Somit ergibt sich das Clustering als die Aufteilung der Eingabemenge, in
der jedem Zentrum eine Teilmenge der Eingabemenge zugewiesen ist. Beim k-Center-Clustering
bezeichnen wir den Wert der Funktion φcenter(C) für eine Lösung C als den Radius des Cluste-
rings. Sei C = {c1, . . . , ck} eine Lösung für Eingabemenge S, und sei φcenter(C) = r der Radius.
Die Eingabemenge ist enthalten in der Vereinigung der metrischen Kugeln

⋃

1≤j≤k
{x ∈ X | d(x, cj) ≤ r}

Abbildung 1 zeigt ein Beispiel für den Euklidischen Abstand.
Gonzales Algorithmus berechnet iterativ eine Menge von Zentren. Im ersten Schritt wird

ein beliebiges Element der Eingabemenge als das erste Zentrum ausgewählt. In jedem weiteren
Schritt wird ein Eingabepunkt als nächstes Zentrum ausgewählt, bei dem das Maximum in
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Abbildung 1: Beispiel eines k-Center-Clusterings mit k = 3 für eine Menge S ⊆ R2 mit der
Euklidischen Abstandsfunktion. Die gestrichelte Linie zeigt das Paar ci ∈ C, xj ∈ S welches den
Radius des Clusterings c1, c2, c3 realisiert. Die Abbildung zeigt ausserdem eine vom Gonzales-
Algorithmus berechnete Lösung in rot mit dem entsprechenden Radius als rote gestrichelte
Linie.

der Zielfunktion angenommen wird. Die Vereinigung der so gewählten Zentren wird als Lösung
zurückgegeben.

Gonzales-Algorithmus(S = {x1, . . . , xm}, k)
1. π1 = 1
2. d1, . . . , dm =∞
3. for i in 1 . . . k do
4. for j in 1 . . .m do
5. //dj speichert den Abstand von xj zu den bisher gewählten Zentren
6. dj = min(dj , d(xj , xπi))
7. ri = max1≤j≤m dj
8. πi+1 = arg max1≤j≤m dj
9. Return {xπ1 , . . . , xπk}

Das k-Center-Problem ist NP-schwer, selbst wenn die gewählte Metrik Euklidisch ist und
die Punkte in einer Ebene liegen. Die Laufzeit des Algorithmus von Gonzales ist in O(km), was
sich leicht überprüfen lässt. Wir nehmen dabei an, dass sich die Abstandsfunktion in konstanter
Zeit evaluieren lässt. Der Gonzales-Algorithmus kann also nicht immer eine optimale Lösung
berechnen, sofern P 6= NP . Abbildung 1 zeigt ein Beispiel für eine Lösung, die vom Algorithmus
berechnet wird und nicht optimal ist. Wir werden nun analysieren, wie gut die berechnete Lösung
im schlimmsten Fall ist, wir vergleichen sie dabei mit der optimalen Lösung.

Satz 19.2. Sei k ∈ N. Sei C∗ = {c1, . . . , ck} eine optimale Lösung des k-Center-Problems
für eine Menge S = {x1, . . . , xm} mit m ≥ k. Seien π1, . . . , πk+1, sowie r1, . . . , rk wie vom
Gonzales-Algorithmus berechnet. Dann ist

rk = φcenter(xπ1 , . . . , xπk) ≤ 2φcenter(C
∗)

Beweis. Zunächst beobachten wir, dass die Variable dj nach dem iten Durchlauf der äußeren
Schleife den kleinsten Abstand von xj zu den gewählten Zentren xπ1 , . . . , xπi speichert. Danach
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wird ri als der maximale Wert der Abstände d1, . . . , dm gesetzt. Das ist genau der Wert der
Zielfunktion φcenter(xπ1 , . . . , xπi). Damit ist der erste Teil der Behauptung bewiesen.

Daraus folgt auch, dass

r1 ≥ r2 ≥ · · · ≥ rk (1)

Sei k = 1. Für jeden Punkt xi gilt laut der Dreiecksungleichung

d(xi, x1) ≤ d(xi, c1) + d(c1, x1) ≤ 2φcenter(C
∗)

Also gilt dies auch für den Punkt, der den Abstand zu x1 maximiert. Das heisst,

r1 = max
1≤i≤m

d(xi, x1) ≤ 2φcenter(C
∗)

Also ist der Satz für k = 1 bewiesen.
Wir wollen nun das Argument mit der Dreiecksungleichung auf k ≥ 1 erweitern. Wir be-

trachten dazu die Menge der gewählten Zentren xπ1 , . . . , xπk und zusätzlich den Punkt xπk+1
.

Aus dem Schubfachprinzip folgt, dass von diesen k + 1 Punkten mindestens zwei Punkte in
demselben Cluster im optimalen Clustering C∗ zugewiesen sind. Sei c` das Zentrum dieses
Clusters und seien xπi und xπj die zwei Punkte in dem Cluster. Jetzt können wir wieder die
Dreiecksungleichung auf diese drei Punkte anwenden.

d(xπi , xπj ) ≤ d(xπi , c`) + d(c`, xπj ) ≤ 2φcenter(C
∗)

Sei ohne Beschränkung der Allgemeinheit i < j. Beachte, dass in Zeile 7, πj als der Punkt
gewählt wird, der den Radius der Lösung der bisher gewählten Zentren xπ1 , . . . , xπj−1 realisiert.
Insbesondere ist

rj−1 = min
1≤i≤j−1

d(xπj , xπi) ≤ d(xπi , xπj )

Zusammen mit (1) ergibt sich, dass

rk ≤ rj−1 ≤ d(xπi , xπj ) ≤ 2φcenter(C
∗)

2 Lloyds Algorithmus

Im nächsten Abschnitt betrachten wir die Grundmenge Rd mit der Euklidischen Metrik.

Definition 19.3. Das k-Means-Problem ist, gegeben eine Menge S = {x1, . . . , xm} ⊆ Rd, und
ein Parameter k ∈ N mit k ≤ m, berechne eine Menge c1, . . . , ck ∈ Rd, welche die Funktion

φmean (c1, . . . , ck) =
m∑

i=1

min
1≤j≤k

‖xi − cj‖2

minimiert.

Lloyds Algorithmus besteht aus zwei Schritten, die immer wieder abwechselnd in einer Schlei-
fe ausgeführt werden, bis sich das Clustering nicht mehr ändert (im Pseudocode unten durch
die Boolsche Variable b ausgedrückt). Die zwei Schritte können wie folgt beschrieben werden.
Der erste Schritt berechnet eine optimale Zuweisung der Eingabepunkte zu einer festen Menge
von Zentren. Der zweite Schritt berechnet für jeden Cluster einer festen Clusterzuweisung ein
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optimales Zentrum. Die Clusterzuweisung kann in einem m-dimensionalen Array gespeichert
werden. Wir speichern an der iten Stelle den Index des Clusters, dem der Punkt xi zugewiesen
ist.

Lloyds-Algorithmus(S = {x1, . . . , xm}, k)
1. Wähle c1, . . . , ck zufällig aus der Menge S
2. Initialisiere S1 = S und S2, . . . , Sk mit ∅
3. repeat
4. b = false
5. // Schritt 1: Berechne optimale Clusterzuweisung zu c1, . . . , ck
6. for i in 1 . . .m do
7. j = arg min1≤j≤k d(xi, cj)
8. if xi /∈ Sj then
9. Wechsle die Clusterzuweisung von xi zum Cluster Sj

10. b = true
11. // Schritt 2: Berechne optimale Clusterzentren für S1, . . . , Sk
12. for j in 1 . . . k do
13. cj = 1

|Sj |
∑

xi∈Sj
xi

14. until b = false

Auch das k-Means-Problem ist NP-schwer und Lloyds Algorithmus berechnet nicht im-
mer eine optimale Lösung. Insbesondere kann der Algorithmus in einem lokalen Minimum der
Zielfunktion konvergieren. Das obige Bild zeigt zwei verschiedene Lösungen, die auf derselben
Punktmenge von Lloyds Algorithmus berechnet wurden. In beiden Fällen ergibt weder die Clus-
terzuweisung, noch die Zentrenberechnung eine neue Lösung, also terminiert der Algorithmus.

Ob der Algorithmus in einem lokalen Minimum terminiert, hängt stark von der Initialisie-
rung ab. Daher wird der Algorithmus oft mehrmals ausgeführt, wobei die zufällige Initialisierung
mit jeder Ausführung neu gewählt wird. Der folgende randomisierte Algorithmus wird zur In-
itialisierung des Algorithmus von Lloyd benutzt.
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k-Means++-Algorithmus(S = {x1, . . . , xm}, k)
1. Wähle π1 zufällig gleichverteilt in {1, . . . ,m}
2. d1, . . . , dm =∞
3. for i in 1 . . . k do
4. for j in 1 . . .m do
5. dj = min(dj , d(xj , xπi))
6. Wähle πi+1 zufällig aus der Menge {1, . . . ,m} mit der folgenden Verteilung:

Der Index j wird mit Wahrscheinlichkeit pj =
dj∑m
`=1 d`

ausgewählt

7. Return {xπ1 , . . . , xπk}

Ähnlich wie beim Gonzales-Algorithmus werden die Zentren iterativ berechnet. In jedem
Schritt wird ein Zentrum zufällig ausgewählt, nach einer Verteilung die sich aus Abständen der
Eingabepunkte zu den bisher gewählten Zentren berechnet. Ein Punkt hat eine hohe Wahr-
scheinlichkeit gewählt zu werden, wenn er verhältnismäßig weit weg von dem Zentrum liegt, das
ihm am nächsten ist. Beim Gonzales-Algorithmus wurde der Punkt gewählt, der diese Wahr-
scheinlichkeit maximiert.
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Hierarchisches Clustering

Anne Driemel Letzte Aktualisierung: 7. Juli 2020

In der letzten Vorlesung haben wir zwei Beispiele des zentrumsbasierten Clusterings kennen-
gelernt. Beim zentrumsbasierten Clustering messen wir die Ähnlichkeit der Element innerhalb
eines Clusters mithilfe eines Zentrums, der diesem Cluster zugewiesen ist. Eine weitere Charak-
teristik des zentrumsbasierten Clusterings ist die Festlegung auf die Anzahl der Cluster mithilfe
eines Parameters k. Die Wahl des Parameters hat einen Einfluss auf das berechnete Clustering,
was in der Praxis nicht immer gewünscht ist.

Dies wollen wir heute umgehen, indem wir nach hierarchischen Strukturen in der Einga-
bemenge suchen. Dabei suchen wir nach einer Hierarchie von Partitionierungen (Clusterings)
der Eingabemenge, welche ineinander geschachtelt sind. Das heisst, ein Cluster (Teilmenge der
Eingabemenge) in einer festen Ebene der Hierarchie sollte in einer höheren Ebene der Hierarchie
nicht wieder geteilt werden, sondern dies sollte nur in tieferen Ebenen der Hierarchie passieren.

Beim zentrumsbasierten Clustering wird die Qualität des Clusterings mithilfe einer Ziel-
funktion beschrieben, welche vom Algorithmus minimiert werden soll. Ähnlich müssen wir nun
mathematisch definieren, was die Qualität eines hierarchischen Clusterings ausmacht. Wir de-
finieren dafür drei Eigenschaften, die gegeben sein müssen.

1 Definition

Sei X eine Grundmenge und sei d(·, ·) eine Metrik auf X. Ein hierarchisches Clustering einer
n-elementigen Menge S ⊆ X ist eine geordnete Menge C = {C1, . . . , Cn} mit den folgenden
Eigenschaften:

(i) (Jede Menge ist eine Partitionierung von S)
Für alle 1 ≤ i ≤ n hat Ci die Form {A1, . . . , An−i+1} mit

(a)
⋃

1≤j≤n−i+1Aj = S und

(b) für j 6= k ist Aj ∩Ak = ∅,
(ii) (Die Mengen sind hierarchisch geschachtelt)

Cn = {S} und für alle 1 ≤ i < n und A ∈ Ci existiert ein B ∈ Ci+1 mit A ⊆ B
(iii) (Die Mengen sind optimal)

Für alle 1 ≤ i ≤ n maximiert Ci die folgende Zielfunktion

φ(Ci) = min
A,B∈Ci

min
a∈A,b∈B

d(a, b)

über alle möglichen Partitionierungen von S die aus genau |Ci| Teilmengen von S bestehen.

Die Inklusionsrelationen des hierarchisches Clusterings werden oft als Baum dargestellt.
Dafür definieren wir einen Graphen G = (V,E), mit Knotenmenge V und Kantenmenge E ⊆
V ×V . Die Knoten des Graphen sind wie folgt definiert. Für jede Teilmenge von S die in einer der
Mengen Ci existiert, existiert ein Knoten in V . Der Knoten ist mit dieser Teilmenge eindeutig
assoziiert. Eine Kante existiert zwischen zwei Knoten A ∈ Ci und B ∈ Ci+1 wenn A ⊂ B.
Aus den oben definierten Eigenschaften kann man ableiten, dass der Graph ein Baum ist. Wir
legen die Wurzel des Baumes fest als die Menge S. Abbildung 1 zeigt ein Beispiel. Beachte dass
das Clustering C1, . . . , Cn nicht eindeutig dargestellt sind, sondern nur die Inklusionsrelationen
zwischen den Mengen in

⋃
1≤i≤nCi.



AGML, Sommersemester 2020 Vorlesung 20 (Seite 2 von 6)

x1
x2

x3

x4

x5

x6

x7

x8

x9

x10
x1x4x6x7 x2 x3 x5 x8 x9 x10

Abbildung 1: Beispiel eines hierarchischen Clusterings einer Menge {x1, . . . , x10} mit Baumdar-
stellung der Inklusionsrelationen. Das Clustering C1, . . . , Cn lässt sich anhand der Baumdar-
stellung nicht eindeutig herleiten.

2 Algorithmus

Wir betrachten einen Greedy-Algorithmus, der die Partitionierungen C1, . . . Cn iterativ berech-
net. Er startet mit der Partitionierung in der jedes Element der Eingabemenge eine einzelne
Menge darstellt. In jedem Schritt werden die zwei Mengen vereinigt, die den kleinsten Abstand
haben, wobei der Abstand zwischen zwei Mengen A und B definiert ist als der kleinste Abstand,
zwischen zwei Elementen a ∈ A und b ∈ B. Wegen dieser Definition des Abstands wird diese
Art von Clustering auch Single-Link-Clustering genannt. Wir besprechen zunächst die Korrekt-
heit bezüglich der drei Clustering-Eigenschaften. Danach besprechen wir, wie der Algorithmus
effizient implementiert werden kann.

Single-Link-Clustering(S = {x1, . . . , xn})
1. Initialisiere C1 = {{x1}, . . . , {xn}}
2. for i in 2 . . . n do
3. Finde zwei Mengen A,B ∈ Ci welche mina∈A,b∈B d(a, b) minimieren.
4. Sei Ci+1 dieselbe Menge wie Ci, nur dass A und B vereinigt sind
5. Return C1, . . . , Cn

Satz 20.1. Die vom Algorithmus berechnete Menge C = {C1, . . . , Cn} erfüllt die Clustering-
Bedingungen (i),(ii) und (iii).

Beweis. Die Bedingungen (i) und (ii) lassen sich leicht durch Induktion beweisen. Wir kon-
zentrieren uns uns auf den Beweis der dritten Bedingung. Wir behaupten, dass die folgende
Schleifen-Invariante gilt:

Behauptung 20.2. Sei A ∈ Ci und seien a, b ∈ A. Dann existieren Elemente c1, . . . c` ∈ A für
ein ` ∈ N mit a = c1, b = c` und d(cj , cj+1) ≤ φ(Ci) für alle 1 ≤ j < `. Wir bezeichnen die
geordnete Menge {c1, . . . , c`} als Pfad.

Wir stellen den Beweis von Behauptung 20.2 hintan und kommen später darauf zurück.
Sei nun C ′ eine Partitionierung von S in |Ci| Mengen, welche sich von Ci unterscheidet.

Es müssen zwei Punkte a, b ∈ S existieren, die in C ′ in unterschiedlichen Mengen liegen, aber
in Ci in derselben Menge A liegen. Wenn dies nicht der Fall wäre, dann wären alle Mengen
von C ′ Teilmengen von Mengen in Ci. Da beide Partitionierungen dieselbe Anzahl von Mengen
enthalten und unterschiedlich sind kann das nicht sein.
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Laut Behauptung 20.2 sind a und b in A durch einen Pfad verbunden, der nur kurze Kanten
enthält. Wir betrachten den Pfad in C ′. Es muss entlang des Pfades eine Kante zwischen zwei
Punkten a′ und b′ geben, die in C ′ nicht in derselben Menge liegen. Es gilt

φ(C ′) = min
A,B∈C′

min
a∈A,b∈B

d(a, b) ≤ d(a′, b′) ≤ φ(Ci)

Daraus folgt, dass φ(Ci) optimal ist. Somit ist die dritte Bedingung unter Annahme von Be-
hauptung 20.2 erfüllt.

3 Exkurs: Minimale Spannbäume

Für die effiziente Berechnung der hierarchischen Clusterings betrachten wir zunächst minimale
Spannbäume.

Definition 20.3 (Minimaler Spannbaum). Sei G = (V,E) ein Graph mit Kantengewichten
w : E → R≥0. Ein Spannbaum von G ist ein zusammenhängender kreisfreier Graph T = (V,E′)
mit E′ ⊆ E. Ein minimaler Spannbaum ist ein Spannbaum der die Summe der Kantengewichte∑

e∈E′ w(e) minimiert.

Wir betrachten den Algorithmus von Kruskal zur Berechnung eines minimalen Spann-
baumes. Dieser Algorithmus ist seiner Struktur nach dem obigen Algorithmus Single-Link-
Clustering sehr ähnlich. Kruskal’s Algorithmus berechnet die Kanten des minimalen Spannbau-
mes iterativ. Er sortiert die Kanten des Graphen aufsteigend nach ihrem Gewicht und bearbeitet
sie in dieser Reihenfolge. Für jede Kante testet der Algorithmus ob diese einen Kreis in der bis-
her gewählten Kantenmenge erzeugen würde. Wenn dem nicht so ist, dann wird die Kante der
aktuellen Menge hinzugefügt. Die so berechnete Kantenmenge wird als Ergebnis zurückgegeben.

Kruskal-Algorithmus(G = (V,E), w)
1. Sortiere die Kantenmenge E nach ihrem Gewicht
2. Seien e1, . . . , em, sodass i ≤ j ⇔ w(ei) ≤ w(ej)
3. Sei E′ = ∅
4. for i in 1, . . . ,m do
5. if ei erzeugt in (V,E′) keinen Kreis
6. E′ = E′ ∪ ei
7. Return (V,E′)

Um den Test, ob die Kante ei einen Kreis in der Kantenmenge E′ einen Kreis erzeugen
würde, effizient ausführen zu können, speichert der Algorithmus zusätzlich die Zusammenhangs-
komponenten des Graphen (V,E′). Sei ei eine Kante (a, b) ∈ E. Die Kante schliesst in (V,E′)
genau dann einen Kreis, wenn a und b in derselben Zusammenhangskomponente sind. Für die
Zusammenhangskomponenten wird eine Datenstruktur zur Verwaltung von disjunkten Mengen
benutzt, welche die folgenden Operationen unterstützt.

• Union(A,B) - Vereinigt die Mengen A und B zu einer neuen Menge und gibt diese zurück.

• Find(x) - Gibt die Menge zurück in der x enthalten ist.

Wir gehen auf diese Datenstruktur nicht weiter ein. Wichtig ist nur, dass Kruskals Algorith-
mus damit effizient implementiert werden kann. Die Laufzeit des Algorithmus von Kruskal ist
in O(|E| log |E|).

Die folgende grundlegende Eigenschaft von minimalen Spannbäumen hilft dabei, zu zeigen,
dass Kruskals Algorithmus einen minimalen Spannbaum berechnet.
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Lemma 20.4 (Schnitt-Eigenschaft). Sei G = (V,E) ein Graph und sei U ⊆ E eine Teilmenge
von Kanten eines minimalen Spannbaums T = (V,E′) von G. Sei A ⊆ V , sodass U keine Kante
enthält, die einen Knoten von A mit einem Knoten von V \A verbindet. Sei F die Kantenmenge
{(a, b) ∈ E | a ∈ A, b ∈ V \ A}. Sei e = arg mine∈F w(e). Dann ist U ∪ {e} Teilmenge eines
minimalen Spannbaums von G.

Beweis. Angenommen, e /∈ E′. Da T zusammenhängend ist, muss es einen Pfad in T geben, der
die Endpunkte von e verbindet. Dieser Pfad muss auch eine Kante in F haben. Sei e′ solch eine
Kante. Wir können e′ durch e ersetzen und erhalten den Graphen T ′ = (V,E′ ∪{e} \ {e′}). Wir
können zeigen, dass T ′ auch ein Spannbaum ist, indem wir zeigen, dass T ′ zusammenhängend
ist und |V | − 1 Kanten enthält. Die Summe der Kantengewichte von T ′ ist

∑

f∈E′
w(f)− w(e′) + w(e) ≤

∑

f∈E′
w(f)

Satz 20.5. Kruskals Algorithmus berechnet einen minimalen Spannbaum von G.

Beweis. Wir führen eine Induktion über die Kanten aus E′ in der Reihenfolge, in der sie vom
Algorithmus hinzugefügt werden. Für den Induktionsanfang betrachten wir die erste Kante die
hinzugefügt wird. Sei e = (a, b) diese Kante. Wir wenden Lemma 20.4 an mit U = ∅ und
A = {a}. Daraus folgt, dass e in einem minimalen Spannbaum enthalten ist.

Nun folgt der Induktionsschritt. Sei e eine Kante, die von Kruskals Algorithmus in Zeile
6 zu der Kantenmenge E′ hinzugefügt wird. Da e keinen Kreis schliesst, verbindet sie zwei
Zusammenhangskomponenten in E′, seien diese A und B. Da der Algorithmus die Kanten in der
aufsteigenden Reihenfolge ihrer Gewichte betrachtet hat e minimales Gewicht unter den Kanten
zwischen A und V \A. Laut Lemma 20.4 ist E′∪{e} Teil eines minimalen Spannbaums, sofern E′

Teilmenge eines minimalen Spannbaums ist. Letzteres folgt aus der Induktionsbehauptung.

4 Anwendung auf das hierarchische Clustering

Sei G = (V,E) ein vollständiger Graph mit Knotenmenge V = S. Das Gewicht einer Kante ist
der Abstand zwischen den entsprechenden Elementen in S, also w(a, b) = d(a, b).1 Betrachte den
Kruskal-Algorithmus angewandt auf diesen Graphen und betrachte den Single-Link-Algorithmus
angewandt auf S. Bevor wir den folgenden Satz zeigen, müssen wir die Algorithmen noch weiter
spezifizieren. Die Anweisung, welche Mengen in Zeile 3 des Single-Link-Clusterings vereinigt
werden sollen, ist unter Umständen nicht eindeutig, wenn es Paare von Elementen mit den
gleichen Abständen gibt. Gleiches gilt für die Reihenfolge der Kanten in Zeile 2 von Kruskals
Algorithmus. Wir nehmen hier einfach an, dass es eine gemeinsame Reihenfolge der Kanten
gibt, die von Kruskal verwendet wird und die auch vom Single-Link-Clustering verwendet wird,
um zu entscheiden, welcher Abstand am kleinsten ist.

Satz 20.6. Sei n = |S|. Seien e1, . . . en−1 die Kanten aus E′, in der Reihenfolge, in der sie von
Kruskals Algorithmus der Menge E′ hinzugefügt werden. Für 1 ≤ j ≤ n, sei Ej die Kantenmenge
{ei | 1 ≤ i < j}. Seien C1, . . . , Cn die Mengen, die durch den Single-Link-Clustering Algorithmus
berechnet werden. Dann gilt für alle 1 ≤ j ≤ n:

(i) Cj ist die Menge der Zusammenhangskomponenten des Graphen (V,Ej)

(ii) Für j < n ist φ(Cj) = w(ej)
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Abbildung 2: Links: Minimaler Spannbaum für die Punktmenge aus Abbildung 1 unter dem
Euklidischen Abstand. Rechts: Baumdarstellung der Inklusionsrelationen. Die Abbildung zeigt
ausserdem die Menge Ci = {{x1, x2, x3}, {x4, x6, x7}, {x5, x8, x9, x10}}. In der Baumdarstellung
sind die entsprechenden Knoten markiert, deren Unterbäume die Mengen in Ci darstellen. Das
Gewicht der Kante (x3, x4) bestimmt die Zielfunktion, das heisst φ(Ci) = d(x3, x4).

Beweis. Wir führen eine Induktion über j. Für j = 1 ist die Kantenmenge Ej die leere Menge.
Die Menge der Zusammenhangskomponenten ist also die Menge der Knoten des Graphen G.
Der Single-Link-Clustering Algorithmus definiert die Menge C1 = {{x1}, . . . , {xn}}. Weiter ist
φ(Ci) = minxi,xj∈S d(xi, xj) = w(e1), da die Kante mit kleinstem Gewicht von Kruskal als erstes
zu E′ hinzugefügt wird. Somit ist der Satz für j = 1 erfüllt.

Sei n > j ≥ 1. Betrachte die Kantenmengen Ej und Ej+1. Aus der Induktionsannahme
wissen wir, dass die Menge Cj die durch den Single-Link-Algorithmus berechnet wird, gleich
den Zusammenhangskomponenten des Graphen (V,Ej) ist. Aus der Konstruktion von Ej und
Ej+1 im Satz ergibt sich Ej+1 = Ej ∪ {ej}. Wir wollen zeigen, dass ej genau die zwei Mengen
A und B aus Cj verbindet, welche in Cj+1 zusammenhängend als die vereinigte Menge A ∪ B
vorkommen.

Betrachte die Vereinigung der Kanten

Fj =
⋃

A∈Cj

{(a, b) ∈ E | a ∈ A, b ∈ V \A}

Die Kanten in Fj sind genau die Kanten von G, die in (V,Ej) keinen Kreis erzeugen. Unter
den Kanten in Fj betrachtet der Algorithmus die Kante mit minimalem Gewicht zuerst. Da
diese keinen Kreis schliesst, wird sie als nächstes hinzugefügt. Also ist,

ej = arg min
e∈Fj

w(e)

Da Cj eine Partitionierung von V ist, folgt

w(ej) = min
A∈Cj

min
(a,b)∈E

a∈A,b∈V \A

w((a, b)) = min
A,B∈Cj

min
(a,b)∈E
a∈A,b∈B

w((a, b))

Da jeder kürzeste Weg zwischen zwei Elementen in verschiedenen Zusammenhangskomponenten
über den Schnitt gehen muss, folgt ausserdem

w(ej) = min
A,B∈Cj

min
a∈A,b∈B

d(a, b)

1Alternativ kann die Abstandsfunktion auch direkt als die Kürzeste-Wege-Metrik in einem Graphen G mit
Knotenmenge S gegeben sein. In diesem Fall betrachten wir G direkt.
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Daraus folgt, dass die Kante ej genau die zwei Mengen in Cj verbindet, die den kleinsten
Single-Link-Abstand haben. Also ist φ(Cj) = w(ej).

Korollar 20.7. Kruskals Algorithmus berechnet ein hierarchisches Clustering der Knotenmenge
V bezüglich der Abstandsfunktion der kürzesten Wege im Graphen G. Die Laufzeit des Algo-
rithmus ist in O(|E| log |E|). Die Mengen C1, . . . , Cn lassen sich mithilfe der Kantengewichte
der Kanten des minimalen Spannbaums eindeutig herleiten. Siehe Abbildung 2.

Beweis von Behauptung 20.2. Der Beweis ist nun sehr einfach. Jedes Paar von Knoten in ei-
ner Menge von Ci ist durch einen Pfad in der entsprechenden Zusammenhangskomponente von
(V,Ei) verbunden. Da Kruskals Algorithmus, die Kanten in der aufsteigenden Reihenfolge ih-
res Gewichts hinzufügt, ist das Gewicht von jeder Kante entlang des Pfads höchstens w(ei).
Gleichzeitig ist w(ei) = φ(Ci), wie wir im obigen Beweis gezeigt haben.

Referenzen

• Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Algorithms, Kapitel 5.1 (Mi-
nimum Spanning Trees)

• Understanding Machine Learning, Kapitel 22.2
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Hierarchisches Clustering II

Anne Driemel Letzte Aktualisierung: 10. Juli 2020

In der letzten Vorlesung haben wir uns mit dem hierarchischen Clustering befasst. Wir ha-
ben dafür eine Zielfunktion definiert und gezeigt, dass der Single-Link-Clustering Algorithmus
ein optimales Ergebnis liefert. Außerdem haben wir einen wichtigen Zusammenhang zwischen
minimalen Spannbäumen und dem Single-Link-Clustering gezeigt, der es uns erlaubt, das hier-
archische Clustering effizient zu berechnen.

1 Hierarchisches Clustering und k-Center

Was ist aber, wenn wir ein hierarchisches Clustering mit einer anderen Zielfunktion berech-
nen wollen? Konkret betrachten wir den Fall, dass die dritte Clustering-Eigenschaft wie folgt
abgewandelt ist.

Sei X eine Grundmenge und sei d(·, ·) eine Metrik auf X. Ein hierarchisches Clustering einer
n-elementigen Menge S ⊆ X ist eine geordnete Menge C = {C1, . . . , Cn} mit den folgenden
Eigenschaften:

(i) (Jede Menge ist eine Partitionierung von S)
Für alle 1 ≤ i ≤ n hat Ci die Form {A1, . . . , An−i+1} mit

(a)
⋃

1≤j≤n−i+1Aj = S und

(b) für j 6= k ist Aj ∩Ak = ∅,

(ii) (Die Mengen sind hierarchisch geschachtelt)
Cn = {S} und für alle 1 ≤ i < n und A ∈ Ci existiert ein B ∈ Ci+1 mit A ⊆ B

(iii) (Die Mengen sind optimal)
Für alle 1 ≤ i ≤ n minimiert Ci die folgende Zielfunktion

φ(Ci) = max
A∈Ci

min
c∈X

max
a∈A

d(c, a)

über alle möglichen Partitionierungen von S die aus genau |Ci| Teilmengen von S bestehen.

Für ein einzelnes Clustering Ci ist diese Zielfunktion äquivalent zu der im k-Center-Problem,
welches wir in der vorletzen Vorlesung kennengelernt haben. Für jede Menge in Ci wird der
Radius einer kleinsten umschließenden Kugel gesucht, das Maximum über alle Mengen bestimmt
die Zielfunktion. Wir vergleichen also jedes Clustering in der Hierarchie mit dem optimalen k-
Center-Clustering. Zusätzlich wollen wir, dass die Mengen hierarchisch geschachtelt sind.

2 Ein Gegenbeispiel

Wir können zunächst feststellen, dass es Mengen S gibt für die keine Lösung existiert, die alle
Eigenschaften erfüllt. Wir betrachten dafür das folgende Beispiel.

Beispiel 21.1. Sei X = R mit d(x, y) = |x − y|, und sei S = {0, 4, 6, 10}. Ein hierarchisches
Clustering von S ist zum Beispiel

C4 = {{0, 4, 6, 10}}, C3 = {{0, 4}, {6, 10}}, C2 = {{0}, {4}, {6, 10}}, C1 = {{0}, {4}, {6}, {10}}.
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Aber hier ist φ(C2) = 2, während die optimale 3-Center-Lösung den Zielwert 1 hat:

φ({0}, {4, 6}, {10}) = 1

Ein anderes hierarchisches Clustering ist

C4 = {{0, 4, 6, 10}}, C3 = {{0}, {4, 6, 10}}, C2 = {{0}, {4}, {6, 10}}, C1 = {{0}, {4}, {6}, {10}}.
Aber hier ist φ(C3) = 3, während die optimale 2-Center-Lösung den Zielwert 2 hat.

φ({0, 4}, {6, 10}) = 2

Wenn wir alle möglichen Mengen C = {C1, . . . , C4} welche die Clustering-Bedingungen (i)
und (ii) erfüllen analysieren, dann können wir sehen, dass für jede dieser Lösungen entweder
φ(C2) ≥ 2 oder φ(C3) ≥ 3 gilt. Also gibt es kein hierarchisches Clustering, welches Bedingung
(iii) erfüllt.

3 Der Algorithmus von Dasgupta und Long

In der vorletzten Vorlesung haben wir den Algorithmus von Gonzales kennengelernt. Der Algo-
rithmus berechnet die von ihm gewählten Zentren iterativ. In jedem Schritt ist das berechnete
Clustering höchstens um einen Faktor 2 schlechter ist als das optimale Clustering. Allerdings
erfüllen die Clusterings nicht unbedingt die Clustering-Bedingung (ii). Wir werden heute den
Algorithmus von Dasgupta und Long kennenlernen. Dieser wandelt die Zuweisungen der Punkte
zu den von Gonzales-Algorithmus berechneten Clusterzentren so ab, dass hieraus ein hierarchi-
sches Clustering wird. Zunächst müssen wir dazu den Gonzales-Algorithmus leicht abwandeln.

Gonzales-Algorithmus(S = {x1, . . . , xn})
1. π1 = 1
2. d1, . . . , dn =∞
3. for i in 1 . . . n do
4. for j in 1 . . . n do
5. //dj speichert den Abstand von xj zu den bisher gewählten Zentren
6. dj = min(dj , d(xj , xπi))
7. ri = max1≤j≤n dj
8. πi+1 = arg max1≤j≤n dj
9. Return xπ1 , . . . , xπn und r1, . . . , rn

Der einzige Unterschied bis jetzt, ist dass wir den Parameter k auf n gesetzt haben und die
Ausgabe erweitert haben. Der Algorithmus gibt eine Permutation der Eingabemenge xπ1 , . . . , xπk
und die Liste der Radien der berechneten Clusterings zurück. Diese Permutation wird auch
Greedy-Permutation genannt.

Sei c1, . . . , cn mit ci = xπi und r1, . . . , rn die Ausgabe des Gonzales Algorithmus für eine Men-
ge S. Wir gruppieren die Punkte nun anhand der Radien in verschiedene Granularitätsebenen.

L0 = {c1}, Lj =
{
ci+1

∣∣∣ ri ∈
(r1

2j
,
r1

2j−1

] }
für j ≥ 1.

Außerdem definieren wir eine Elternfunktion auf der Menge der Punkte. Die Elternfunktion
definiert einen gerichteten Graphen G auf der Punktmenge, der eine Baumstruktur hat. Die
Wurzel dieses Baumes ist c1. Sei die Elternfunktion p : {2, . . . , n} → {1, . . . , n} definiert als

p(i) = arg min
1≤j≤n



 d(ci, cj)

∣∣∣∣∣∣
cj ∈

L(i)−1⋃

j′=0

Lj′




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Abbildung 1: Schematische Darstellung eines hierarchischen Clusterings von Dasgupta und Long
von der Menge c1, . . . , c5 (in der Greedy-Permutation).

wobei L(i) die Granularitätsebene angibt (also den Index der Menge aus L0, L1, . . . ), in der sich
ci befindet. Für einen Punkt ci ist p(i) der nächste Nachbar in der Menge der Punkte, die in
einer niedrigeren Granularitätsebene liegen. Die Knoten von G sind gegeben durch die Menge
{c1, . . . , cn} und jeder Knoten ci, ausser dem Wurzelknoten, hat (genau) eine ausgehende Kante,
nämlich die Kante (ci, cp(i)). Abbildung 1 zeigt ein Beispiel dieses Graphen.

Der Algorithmus von Dasgupta und Long berechnet ein hierarchisches Clustering welches
unsere Clustering-Bedingungen (i) und (ii) erfüllt, wie folgt. Angefangen mit dem Clustering
C1 werden in jedem Schritt immer genau zwei Cluster vereinigt. Hierbei werden die Punkte in
der umgekehrten Reihenfolge betrachtet, in der sie in der Greedy-Permutation auftauchen. Sei
cj ein Element dieser Reihenfolge. Dann vereinigen wir genau diese beiden Cluster, die durch
eine Elternkante zwischen cj und cp(j) verbunden sind. Der Pseudocode des Algorithmus ist wie
folgt.

Dasgupta-Long-Algorithmus(S = {x1, . . . , xn})
1. c1, . . . , cn, r1, . . . , rn ← Gonzales-Algorithmus(S)
2. Berechne Mengen L0 und Lj mit Lj 6= ∅
3. Berechne Werte der Elternfunktion p(i) für alle 1 < i ≤ n
4. Sei C1 = {{c1}, . . . , {cn}}
5. for i in 1 . . . n do
6. Sei j = n− i+ 1, sei A ∈ Ci die Menge die cj enthält
7. Sei j′ = p(j), sei B ∈ Ci die Menge die cj′ enthält
8. Sei Ci+1 dieselbe Menge wie Ci, nur dass A und B vereinigt sind
9. Return C1, . . . , Cn

Eine andere hilfreiche Interpretation des Graphen G in Zusammenhang mit dem hierarchi-
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schen Clustering ist die folgende. Das Clustering Ci ergibt sich durch die Zusammenhangskom-
ponenten von G, wenn die Elternkanten entfernt werden, die von den ersten i Punkten in der
Greedy-Permutation ausgehen. Statt die Cluster Schritt für Schritt zu vereinigen, könnten wir
uns also auch den umgekehrten Prozess vorstellen, in dem Cluster Schritt für Schritt geteilt
werden, indem wir Kanten in G entfernen. Um zu überprüfen, ob der Graph G tatsächlich ein
Baum ist, stellen wir die folgenden Überlegungen an. Da alle Knoten ausser der Wurzelknoten
einen Elternknoten haben, können wir von einem beliebigen Knoten aus, den Elternkanten fol-
gen, bis wir irgendwann am Wurzelknoten ankommen. Also ist der Graph zusammenhängend.
Gleichzeitig wissen wir, dass der Graph genau n−1 Kanten hat, wobei n die Anzahl der Knoten
ist.

4 Analyse der Qualität der berechneten Lösung

Wir wollen nun analysieren, wie gut die Werte der Zielfunktion φ(C1), . . . , φ(Cn) auf dem be-
rechneten Clustering sind, wobei wir jedes Clustering Ci wieder mit dem optimalen Clustering
mit der gleichen Anzahl von Clustern vergleichen.

Lemma 21.2. Für alle ci ∈ S gilt d(ci, cp(i)) ≤ r1
2L(i)−1 wobei L(i) die Granularitätsebene von

ci angibt.

Beweis. Wir zeigen zuerst eine andere Aussage: Für alle j ist der Abstand zwischen ci und
seinem nächsten Nachbarn in der Menge L0 ∪ L1 ∪ · · · ∪ Lj höchstens r1

2j
. Sei ck der Punkt mit

höchsten Index in Lj . Dann ist

L0 ∪ L1 ∪ · · · ∪ Lj = {c1, . . . , ck} =: Z

Aus der Analyse des Gonzales-Algorithmus folgt, dass jeder Punkt in S Abstand höchstens
rk zu seinem nächsten Nachbarn in Z hat.

Aus der Definition der Granularitätsebenen folgt, dass ck+1 ∈ Lj genau dann wenn rk ∈
( r1
2j
, r1
2j−1 ]. Da ck+1 /∈ Lj , folgt daraus, dass rk ≤ r1

2j
.

Der Satz folgt nun indem wir j = L(i)− 1 wählen. Insbesondere haben wir hergeleitet, dass
gilt

d(ci, p(i)) = min
1≤j′≤L(i)−1

d(ci, cj′) ≤
r1

2L(i)−1

Satz 21.3. Sei 1 ≤ k ≤ n und sei i = n − k + 1. Sei C∗ ein optimales k-Center-Clustering
einer Menge S mit k Clustern. Für das vom Dasgupta-Long-Algorithmus berechnete Clustering
Ci gilt

φ(Ci) ≤ 8φ(C∗)

Beweis. Wir zeigen φ(Ck) ≤ 4rk. Der Satz folgt dann aus Satz 19.2 (Gonzales-Algorithmus).
Sei ci ∈ S fest. Wir folgen den Elternkanten von ci bis wir bei einem Punkt in der Menge
Z = {c1, . . . , ck} ankommen. Die Menge Ci wird vom Algorithmus berechnet. Die Clusterzentren
werden aber nicht vom Algorithmus festgelegt. Wir analysieren die Kosten für Clusterzentren
Z und wir weisen ci dem Clusterzentrum cp(i) zu.

Sei die Sequenz der Indizes auf diesem Pfade i0, i2, . . . , i`, mit ci` ∈ Z. Das heißt, wir
definieren i0 = i, i1 = p(i0), i2 = p(i1), etc. Die Sequenz i0, i1, . . . , i` ist absteigend, da die
Elternkanten nur auf Element in niedrigeren Granularitätsebenen zeigen.
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Wir leiten eine obere Schranke für den Abstand zwischen ci und ci` her, indem wir die
Dreiecksungleichung auf die Kanten der Pfade anwenden.

d(ci, ci`) ≤ d(ci0 , ci1) + d(ci1 , ci2) + · · ·+ d(ci`−1
, ci`)

Laut Lemma 21.2 können wir diese Terme beschränken und erhalten

d(ci, ci`) ≤
r1

2L(i0)−1
+

r1

2L(i1)−1
+ . . .

r1

2L(i`−1)−1

Da sich der Index der Granularitätsebene mit jeder Elternkante um mindestens 1 verringert, ist
L(i0) = L(i) und L(ij) ≤ L(i)− j. Es folgt

d(ci, ci`) ≤
r1

2L(i)−1
+

r1

2L(i)−2
+ · · ·+ r1

2L(i)−`+1
+ · · ·+ r1

2L(i`−1)−1 ≤
L(i)−1∑

j=L(i`−1)−1

r1
2j

Wir ersetzen j′ = j − (L(i`−1)− 1) in der Laufvariable der Summe und erhalten

d(ci, ci`) ≤
∞∑

j′=0

r1

2j
′+(L(i`−1)−1) =

r1

2(L(i`−1)−1)

∞∑

j′=0

1

2j′
≤ r1

2(L(i`−1)−2) ≤ 4 · r1

2(L(i`−1))

In welcher Granularitätsebene ist also ci`−1
? Wir wissen, dass ci` ∈ Z und also i` ∈ {1, . . . , k},

da wir den Elternkanten bis zu diesem Punkt gefolgt sind. Also ist i`−1 ≥ k + 1, da wir sonst
schon bei i`−1 in der Menge Z terminiert wären. Daraus schliessen wir, dass L(i`−1) ≥ L(k + 1),
und daher

d(ci, ci`) ≤ 4 · r1

2(L(k+1))

Weiter ist nach der Definition der Granularitätsebenen

ci ∈ Lj ⇔ ri−1 ∈
(r1

2j
,
r1

2j−1

]

Für i = k + 1 und j = L(k + 1) erhalten wir also rk >
r1

2L(k+1) .
Da wir die Schranke für jedes xi ∈ S herleiten können, folgern wir, dass

φ(Ck) ≤ max
xi∈S

min
c∈Z

d(ci, c) ≤ 4 · r1

2(L(k+1))
≤ 4rk

Referenzen
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Dimensionsreduktion

Anne Driemel Letzte Aktualisierung: 14. Juli 2020

In vielen Anwendungen sind die Daten, die wir als Eingabe für unsere Lernalgorithmen
bekommen, hochdimensional. In der Bildanalyse, zum Beispiel, ist jeder Datenpunkt eine Kom-
bination von vielen Pixelwerten. Jeder einzelne Pixel ist dabei ein eigenes Merkmal und nimmt
somit eine eigene Dimension im Merkmalsraum ein. Gleichzeitig kann man sich leicht vorstellen,
dass der exakte Werte jedes einzelnen Pixels nicht unbedingt für die Analyse benötigt wird. In
der Dimensionsreduktion geht es darum die Daten in einen geeigneten niedrig-dimensionalen
Unterraum zu projizieren, um die Daten vereinfacht darzustellen, wobei die Datenpunkte trotz-
dem möglichst gut erhalten bleiben sollen.

1 Definition der Zielfunktion

Sei S = {x1, . . . , xn} ⊆ Rd eine Menge von Datenpunkten und sei k ∈ N ein Parameter mit
k ≤ d. Wir wollen S mithilfe einer Funktion f : Rk → Rd beschreiben, definiert durch µ ∈ Rd

und eine d× k Matrix V mit

f(λ) = µ+ V λ, mit µ ∈ Rd

Wir verlangen außerdem von der Matrix V , dass sie orthonormal ist, das heißt

(i) für jeden Spaltenvektor vi von V gilt, dass 〈vi, vi〉 = 1

(ii) für je zwei Spaltenvektoren vi und vj von V gilt, dass 〈vi, vj〉 = 0

Die Funktion f bildet auf eine k-dimensionale Hyperebene im Rd ab. Ziel ist es also, die Daten-
punkte in S innerhalb einer k-dimensionalen Hyperebene angemessen darzustellen. Die Dimensi-
onsreduktion geschieht hier indem wir jedes xi über seinen Index dem Vektor λi assoziieren. Die
Abbildung in den k-dimensionalen Unterraum wird also durch die Wahl der Vektoren λ1, . . . , λn
bestimmt. Wie gut unsere Repräsentation von S ist, messen wir mithilfe der Summe der qua-
dratischen Abstände. Dies wird in der folgenden Zielfunktion ausgedrückt.

Wir wollen einen Vektor µ, eine Matrix V und Spaltenvektoren λ1, . . . , λn finden, welche
zusammen die Zielfunktion

φ(µ, V, λ1, . . . , λn) =
n∑

i=1

‖xi − f(λi)‖2

minimieren. Diese Zielfunktion lässt sich noch vereinfachen. Dazu betrachten wir zunächst λi
und halten dabei V und µ und λj mit i 6= j fest. Man kann zeigen, dass φ für

λi = V T (xi − µ) (1)

minimiert wird. Insbesondere ist f(λi), für diese Wahl von λi, die orthogonale Projektion von
xi auf die Hyperebene, die durch µ und V gegeben ist, und damit der Punkt in der Hyperebene
mit dem kleinsten Abstand zu xi. Im nächsten Schritt halten wir V und die λ1, . . . , λn fest und
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minimieren φ über alle Werte von µ. Hier können wir die partielle Ableitung nach µ wie folgt
herleiten. Sei γi ∈ Rd definiert als γi = xi − V λi für jedes 1 ≤ i ≤ n.

∂

∂µ

n∑

i=1

‖xi − f(λi)‖2 =
∂

∂µ

n∑

i=1

‖xi − µ− V λi‖2

=
∂

∂µ

n∑

i=1

‖γi − µ‖2

=
n∑

i=1

∂

∂µ
〈γi − µ, γi − µ〉

=
n∑

i=1

(
∂

∂µ1
(γi,1 − µ1)2, . . . ,

∂

∂µd
(γi,d − µd)2

)

=
n∑

i=1

(−2(γi,1 − µ1), . . . ,−2(γi,d − µd))

=
n∑

i=1

−2(γi − µ)

=
n∑

i=1

−2(xi − µ− V λi)

Setzen wir dies gleich dem Nullvektor, dann erhalten wir

µ =
1

n

n∑

i=1

xi − V
(

1

n

n∑

i=1

λi

)

Sei x = 1
n

∑n
i=1 xi. Setzen wir nun (1) ein, dann erhalten wir

µ = x− V
(

1

n

n∑

i=1

V T (xi − µ)

)
= x− V V T (x− µ)

Das ist äquivalent zu
V V T (x− µ) = x− µ

Wir können hier µ = x wählen und diese Gleichung erfüllen, ohne dass die Wahl von V berührt
ist.

Damit ergibt sich für unsere Zielfunktion

φ(V ) =

n∑

i=1

‖(xi − x)− V V T (xi − x)‖2 (2)

Wir können dies so interpretieren, dass wir eigentlich eine Funktion f für die zentrierte Menge
S′ = {x′1, . . . , x′n} mit x′i = xi− x finden wollen. Wir können vereinfachend annehmen, dass die
Menge S schon zentriert ist. Dann ist x gleich dem Nullvektor und die optimale Hyperebene
geht durch den Ursprung. In diesem Fall ist die Funktion f eine lineare Abbildung und bildet
auf einen linearen Unterraum ab, die durch die Spaltenvektoren von V aufgespannt wird.
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2 Beispiel

Wir wollen uns der Funktion f zunächst weiter anhand eines Beispiels nähern. Abbildung 1
zeigt eine zufällige Auswahl von Bildern einer handgeschriebenen Ziffer Drei, aus dem MNIST
Datensatz. Jedes Bild ist durch einen hochdimensionalen Vektor von Pixelwerten gegeben. Ein
Bild mit h × w Pixeln ist demnach ein Vektor im Rh·w. Wir wollen diesen Datensatz in der
Parametrisierung einer 2-dimensionalen Hyperebene betrachten, welche die Zielfunktion φ mi-
nimiert. Das linke Bild zeigt den Vektor µ, also das Bild einer gemittelten handgeschriebenen

Ziffer Drei. Das mittlere Bild zeigt eine Darstellung des ersten Spaltenvektors v1 der Matrix
V , das rechte Bild zeigt eine Darstellung des zweiten Spaltenvektors v2 der Matrix V . Beachte,
dass der graue Hintergrund hier ein Artifakt der Darstellung ist. Die Pixelwerte sind in der
Darstellung auf Grauwerte zwischen 0 und 1 abgebildet. Die hellen Pixel der Vektoren v1 und
v2 sollten also als negative Werte interpretiert werden und dunkle Pixel als positive Werte.

Ein Punkt in der k-dimensionalen Hyperebene, die durch µ, v1 und v2 bestimmt ist, wird
durch einen Parametervektor λ = (t1, t2) ∈ R2 als

f(t1, t2) = µ+ t1v1 + t2v2

dargestellt. Abbildung 2 zeigt das Ergebnis für eine Auswahl an Punkten im Parameterraum.

Abbildung 1: Zufällige Auswahl des MNIST-Datensatzes von Bildern von handgeschriebenen
Ziffern. Hier ist eine Auswahl getroffen von Beispielen der Ziffer Drei.
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Abbildung 2: Links: Punktmenge (gelb) aus dem MNIST-Datensatz (nur Ziffer Drei) projiziert
auf den Unterraum, der durch v1 und v2 gespannt wird. Rechts: Darstellung der Rekonstruktion
durch die Funktion f(t1, t2) = µ+ t1v1 + t2v2 für die blauen Gitterpunkte (t1, t2) im Bild links.

3 Singulärwertzerlegung

Wir wollen eine Matrix V finden, welche die Zielfunktion φ in (2) minimiert. Dazu schreiben
wir unsere Menge von Datenpunkten S = {x1, . . . , xn} ⊆ Rd in eine Matrix. Sei A eine n × d
Matrix mit Zeilenvektoren a1, . . . an mit ai = (xi − x) mit x = 1

n

∑n
i=1 xi für alle 1 ≤ i ≤ n.

Wir betrachten zunächst den Fall k = 1. In diesem Fall hat die Matrix V nur einen Spal-
tenvektor v1. Dieser Spaltenvektor spannt einen 1-dimensionalen Unterraum, also eine Gerade
durch den Ursprung, und wir betrachten die Projektionen der Eingabemenge auf diese Gerade.

Betrachte das Dreieck mit den Eckpunkten ai, der Projektion yi = v1 〈v1, ai〉, und dem
Nullpunkt. Seien βi = ‖v1 〈v1, ai〉 ‖ und αi = ‖ai− v1 〈v1, ai〉 ‖, und ‖ai‖ die Seitenlängen dieses
Dreiecks.

ai

αi

βi

v1

yi

0

Es folgt aus dem Satz von Pythagoras, dass

β2i = ‖ai‖2 + α2
i

Damit ist α2
i = ‖ai‖2 − β2i . Wir suchen nach einem Vektor v1 mit ‖v1‖ = 1, sodass φ(v1) =∑n

i=1 α
2
i minimiert wird. Durch Einsetzen der obigen Beobachtung erhalten wir

arg min
v1∈Rd
‖v1‖=1

n∑

i=1

α2
i = arg min

v1∈Rd
‖v1‖=1

n∑

i=1

‖ai‖2 − β2i = arg max
v1∈Rd
‖v1‖=1

n∑

i=1

β2i

Um die Summe auf der rechten Seite noch weiter zu vereinfachen, beobachten wir, dass

βi = ‖v1 〈v1, ai〉 ‖ = | 〈v1, ai〉 |,

da ‖v1‖ = 1 ist. Also ist
n∑

i=1

β2i =
n∑

i=1

| 〈v1, ai〉 |2 = ‖Av1‖2
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Das heißt, φ zu minimieren ist äquivalent dazu, ‖Av1‖ zu maximieren.
Angenommen, wir könnten v1 bestimmen. Betrachte den folgenden Greedy-Algorithmus, der

weitere Spaltenvektoren v2, . . . , vk der Matrix V unter dieser Annahme bestimmt.

Greedy-Algorithmus(n× d Matrix A)
1. v1 = arg max‖v1‖=1 ‖Av1‖
2. σ1 = ‖Av1‖
3. while σi 6= 0 do
4. i = i+ 1
5. vi = arg max ‖vi‖=1

vi⊥v1,...vi−1

‖Avi‖
6. σi = ‖Avi‖
7. Return v1, . . . , vi

Man kann zeigen, dass der Algorithmus eine sogenannte Singulärwertzerlegung der Matrix A
bestimmt. Allgemein besteht die Singulärwertzerlegung einer reellen Matrix A aus drei Matrizen
U,D, V , mit

A = U ·D · V T

und mit den folgenden Eigenschaften der Matrizen
- U ist eine n× r Matrix mit orthonormalen Spaltenvektoren u1, . . . , ur,
- V ist eine d× r Matrix mit orthonormalen Spaltenvektoren v1, . . . , vr,
- D ist eine r × r Diagonalmatrix mit Einträgen σ1 ≥ · · · ≥ σr ≥ 0,

wobei r den Rang der Matrix A bezeichnet, das heißt r ist die maximale Anzahl linear un-
abhängiger Zeilenvektoren von A.

Wir nennen die Spaltenvektoren von V die rechten Singulärvektoren, die Spaltenvektoren
von U die linken Singulärvektoren und die Werte σ1, . . . , σr die Singulärwerte. Wir können die
obige Gleichung schreiben als

A =

r∑

i=1

σiuiv
T
i ,

Betrachten wir nur die Summe der ersten k Terme, dann erhalten wir eine Matrix

Ak =

k∑

i=1

σiuiv
T
i

Die Zeilenvektoren von Ak entsprechen den Vektoren yi in dem von V aufgespannten k-
dimensionalen Unterraum, welche unsere Datenpunkte ai approximieren sollen. Dadurch, dass
die Singulärwerte ihrer Größe nach geordnet sind, wählen wir mit Ak genau die Terme aus, die
am stärksten in die Summe eingehen.

Alternativ können die Vektoren v1, . . . , vk durch eine Eigendekomposition der Matrix ATA
bestimmt werden. Dort würden wir die k Eigenvektoren mit den größten Eigenwerten auswählen.
Die Darstellung der Datenpunkte im Unterraum der ersten k Eigenvektoren, bzw. Singulärvektoren,
wird auch als Eigenkomponentenanalyse bezeichnet.

4 Potenzmethode

Wie kann man nun den Singulärvektor arg max‖v1‖=1 ‖Av1‖ bestimmen? Dafür betrachten wir
die sogenannte Potenzmethode. Die Methode hat ihren Namen daher, dass sie das Ergebnis
bestimmt indem sie eine Matrix immer wieder mit sich selbst multipliziert, um eine hohe Potenz
dieser Matrix zu berechnen.
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Betrachte die Matrix B = AT ·A. Sei A =
∑r

i=1 σiuiv
T
i die Singulärwertzerlegung, wie oben

definiert. Dann ist

AT =
r∑

i=1

σi(uiv
T
i )T =

r∑

i=1

σiviu
T
i .

Also erhalten wir für B

B =

(
r∑

i=1

σiviu
T
i

)


r∑

j=1

σjujv
T
j




=
r∑

i=1

r∑

j=1

σiσj(viu
T
i )(ujv

T
j )

=
r∑

i=1

σ2i vi(u
T
i ui)v

T
i +

r∑

i=1

r∑

j=1
i 6=j

σiσjvi(u
T
i uj)v

T
j

Da die Vektoren u1, . . . , ur orthonormal sind, gilt uTi ui = 1 für 1 ≤ i und uTi uj = 0 für i 6= j.
Daher folgt

B =
r∑

i=1

σ2i viv
T
i

Betrachte nun die Matrix B2 = B ·B.

B2 =

(
r∑

i=1

σ2i viv
T
i

)


r∑

j=1

σ2j vjv
T
j




=
r∑

i=1

r∑

j=1

σiσj(viv
T
i )(vjv

T
j )

=
r∑

i=1

σ2i vi(v
T
i vi)v

T
i +

r∑

i=1

r∑

j=1
i 6=j

σiσjvi(v
T
i vj)v

T
j

Da die Vektoren v1, . . . , vr orthonormal sind, gilt vTi vi = 1 für 1 ≤ i und vTi vj = 0 für i 6= j.
Daher erhalten wir

B2 =
r∑

i=1

σ4i viv
T
i

Allgemein können wir damit für die kte Potenz von B herleiten, dass

Bk =
r∑

i=1

σ2ki viv
T
i

da der Term (vTi vi) immer gleich 1 ist und bei der Multiplikation stets wegfällt. Wenn σ1 > σ2,
dann konvergiert Bk für große Werte von k gegen den ersten Term der Summe,

Bk → σ2k1 v1v
T
1

Das heißt, wir können v1 bestimmen, indem wir einen Spaltenvektor von Bk normieren.
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