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Our question is still “How well can prices coordinate markets?” Last time, we got a glimpse
at the classic economic theory: If there is a Walrasian equilibrium, it defines prices, which make
everybody happy and yield maximum social welfare.

Today, we will turn to much more recent results, in which the perspective of computer science
comes into play. We turn to a setting of incomplete information. Our goal is to post prices for
items without knowing which buyers will be present eventually. Buyers then show up one after
the other and buy their preferred item(s).

1 Model
Recall the definition of a combinatorial auction. There are n buyers N = {1, . . . , n} and m items
M . Each buyer has a private valuation function vi : 2M → R≥0. Each item can be assigned to
at most one buyer.

We assume that the valuation functions vi are unit demand, that is, they are of the form
vi(S) = maxj∈S vi,j .

Buyer i’s valuation vi is drawn from a publicly known distribution Di. The outcome vi,
however, is private. We use the knowledge of the distributions (Di)i∈N to compute item prices
(pj)j∈M . The mechanism then looks as follows:

• Approach the buyers in order i = 1, . . . , n

• Buyer i buys whatever set Si of unsold items maximizes vi(Si)−
∑
j∈Si

pj , pays
∑
j∈Si

pj

Note that this mechanism still consists of an allocation function f and a payment function p.
Of course, buyers could decide to lie about their valuation vi and buy another set. But this can
only reduce the utility because the choice of the set Si is exactly so that it maximizes utility.

Observation 21.1. The posted-prices mechanism is truthful for any choice of prices.

We are interested to what extend such a mechanism can optimize social welfare. That is, how
does

∑
i∈N vi(Si) compare to OPT(v) = maxallocation S∗

1 ,...,S
∗
n

∑
i∈N vi(S∗i ). In the last Lecture,

we have seen that if valuations are unit-demand, a Walrasian equilibrium always exists. However,
the following example illustrates that, even in the full information setting, using prices given by
a Walrasian equilibrium does not necessarily lead to a social welfare maximizing allocation in
the posted prices mechanism.

Example 21.2. Consider items A, B, C and bidders 1, 2 that have unit-demand valuations.
Assigning the items is just the same as finding a matching in a complete bipartite graphs whose
vertices are N ∪M . The edge between i ∈ N and j ∈M has weight vi,j. We only draw edges of
positive value.
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First of all, one can verify that there exist two Walrasian equilibria using the depicted
price vector, namely, allocating either A,B or B,C to the bidders which are therefore welfare
maximizing allocations. Nevertheless, using the posted prices mechanism with the given item
prices it can occur that bidder 1 buys item A and bidder 3 buys item C which only gives a 2

k+1
fraction of the optimal social welfare.

In the remainder of this lecture, we will look how to set prices of the items in order to get a
good fraction of the optimal social welfare.

2 Step 1: Full Information
We will first assume that we actually know the valuation functions (vi)i∈N . How can we set
prices in this case that still optimize social welfare?

Let OPTi(v) denote the item that buyer i gets in optimal solution on v. We define the price
for item j depending on who gets it in the optimal allocation by setting

pvj =
{1

2vi,j if buyer i gets item j in optimal solution on v
0 if item j is unassigned in optimal solution on v

Note that equivalently we could write

pvj = 1
2
∑
i∈N

1OPTi(v)=jvi,j . (1)

Define Ti(v) as the set of items that are sold to buyers 1, . . . , i on v. The revenue is given by

revenue(v) =
∑
j∈M

pvj1j∈Tn(v) ≥
∑
i∈N

pvOPTi(v)1OPTi(v)∈Tn(v) .

One option for buyer i is to buy nothing. Therefore, ui(v) ≥ 0. If OPTi(v) has not been
sold yet, that is, OPTi(v) 6∈ Ti−1(v), then buyer i could also buy OPTi(v). This gives us

ui(v) ≥
(
vi,OPTi(v) − pvOPTi(v)

)
1OPTi(v)6∈Ti−1(v) ≥

(
vi,OPTi(v) − pvOPTi(v)

)
1OPTi(v) 6∈Tn(v) ,

where in the second step we use that Ti−1(v) ⊆ Tn(v).
Taking the sum of revenue and buyers’ utilities∑
i∈N

vi(Si) = revenue(v) +
∑
i∈N

ui(v)

≥
∑
i∈N

pvOPTi(v)

(
1OPTi(v)∈Tn(v) + 1OPTi(v)6∈Tn(v)

)
=
∑
i∈N

pvOPTi(v) = 1
2OPT(v) .

3 Step 2: Incomplete Information
It is very easy to turn the above posted-price mechanism into one for the setting of incomplete
information. Let ṽ be another sample from the known distributions. Then set the price of item
j to pj = E

[
pṽj

]
. That is, we set it to the expected price, using an independent fresh sample.

Theorem 21.3 (Feldman/Gravin/Lucier, 2015). The expected social welfare of the posted-prices
mechanism is a 1

2 fraction of the expected optimal social welfare.
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Proof. For the revenue, we have again

revenue(v) =
∑
j∈M

pj1j∈Tn(v) .

So, by linearity of expectation

E [revenue(v)] = E

∑
j∈M

pj1j∈Tn(v)

 =
∑
j∈M

pjE
[
1j∈Tn(v)

]
.

Note that we could also replace E
[
1j∈Tn(v)

]
= Pr [j ∈ Tn(v)] but we will keep the indicator

because it nicely cancels out eventually.
Lower bounding the utilities is more complicated because we have to avoid dependencies. To

this end, draw another valuation profile v(i)
−i for every i ∈ N . Buyer i could buy the item she gets

in the optimal solution on (vi, v(i)
−i). So, this is the optimal solution on the valuation consisting

of the actual valuation vi but the “hallucinated” other valuations v(i)
−i. The utility is at least

ui(v) ≥
∑
j∈M

1
j=OPTi(vi,v

(i)
−i) (vi,j − pj) 1j 6∈Ti−1(v) .

By linearity of expectation, this implies

E [ui(v)] ≥ E

∑
j∈M

1
j=OPTi(vi,v

(i)
−i) (vi,j − pj) 1j 6∈Ti−1(v)


=
∑
j∈M

E
[
1
j=OPTi(vi,v

(i)
−i) (vi,j − pj) 1j 6∈Ti−1(v)

]
.

Observe that the first part of the expectation only depends on v(i)
−i and vi whereas the second

part only depends on v1, . . . , vi−1.

1
j=OPTi(vi,v

(i)
−i) (vi,j − pj)︸ ︷︷ ︸

only depends on vi and v
(i)
−i

1j 6∈Ti−1(v)︸ ︷︷ ︸
only depends on v1, . . . , vi−1

Therefore, we can write

E
[
1
j=OPTi(vi,v

(i)
−i) (vi,j − pj) 1j 6∈Ti−1(v)

]
= E

[
1
j=OPTi(vi,v

(i)
−i) (vi,j − pj)

]
E
[
1j 6∈Ti−1(v)

]
.

Finally, we use that v(i)
−i and v−i are identically distributed to get

E
[
1
j=OPTi(vi,v

(i)
−i) (vi,j − pj)

]
= E

[
1j=OPTi(v) (vi,j − pj)

]
,

and that Ti−1(v) ⊆ Tn(v) to get

E
[
1j 6∈Ti−1(v)

]
≥ E

[
1j 6∈Tn(v)

]
.

So overall
E [ui(v)] ≥

∑
j∈M

E
[
1j=OPTi(v) (vi,j − pj)

]
E
[
1j 6∈Tn(v)

]
.
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Now, we take the sum over all i ∈ N

E
[∑
i∈N

ui(v)
]

=
∑
i∈N

E [ui(v)]

≥
∑
i∈N

∑
j∈M

E
[
1j=OPTi(v) (vi,j − pj)

]
E
[
1j 6∈Tn(v)

]
=
∑
j∈M

E
[
1j 6∈Tn(v)

] ∑
i∈N

E
[
1j=OPTi(v) (vi,j − pj)

]

=
∑
j∈M

E
[
1j 6∈Tn(v)

](
E
[∑
i∈N

1j=OPTi(v)vi,j

]
−E

[∑
i∈N

1j=OPTi(v)pj

])

Observe that by (1)

E
[∑
i∈N

1j=OPTi(v)vi,j

]
= E

[
2pvj

]
= 2pj .

Furthermore, note that
∑
i∈N 1j=OPTi(v) ≤ 1 because the optimum may allocate item j at most

once. Therefore
E
[∑
i∈N

1j=OPTi(v)pj

]
≤ pj .

So, in combination ∑
i∈N

E
[
1j=OPTi(v) (vi,j − pj)

]
≥ pj .

For the sum of buyer utilities this means

E
[∑
i∈N

ui(v)
]
≥
∑
j∈M

E
[
1j 6∈Tn(v)

]
pj .

Summarizing

E
[∑
i∈N

vi(Si)
]

= E
[
revenue(v) +

∑
i∈N

ui(v)
]
≥
∑
j∈M

pj = 1
2E [OPT(v)] .

4 Optimality
Note that any posted-prices mechanism inherently works in a sequential way. Therefore, if
we show optimality for any sequential algorithm, then this also implies our choice of prices is
optimal.

Theorem 21.4. There are distributions such that the expected social welfare of any sequen-
tial/online algorithm is no better than 1

2 fraction of the expected optimal social welfare.

Proof. Consider a single item. Buyer 1 has value 1, buyer 2 has value 1
ε with probability ε, 0

otherwise. The optimal social welfare is achieved by giving the item to buyer 2 if he has high
value, to buyer 1 otherwise. The expected value is

ε · 1
ε

+ (1− ε) · 1 = 2− ε .

In contrast, an algorithm that sequentially makes the decisions, has to decide whether to give
the item to buyer 1 without knowing buyer 2’s value. No matter if it decides to give the item to
buyer 1 or not (in which case it goes to buyer 2), the expected value is always 1.
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