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So far, our attention in mechanism design focused on social welfare. That is, we wanted to
maximize the overall value of the allocation that we make. Today we move to a different objective
function, namely to maximize revenue. How can we sell an item so as to maximize the winner’s
payment?

This question is a lot different from maximizing social welfare. For example, assume that
we have only a single bidder. Maximizing social welfare is trivial (just give him the item) but
how do we make him pay as much as possible? If we have no idea of what the item could be
worth to him, he can just claim arbitrarily small numbers. Therefore, the standard model for
revenue maximizing is different: We assume that bidders’ values are drawn from publicly known
probability distributions. However, we do not know the realizations, meaning the actual values.
These are again private information.

1 Model

We again assume that there are n bidders; the set of all bidders is denoted by N. Each of the
bidders will report a bid b;. We sell a single item among these bidders. Each bidder i has a
private valuation v; > 0 for being allocated the item. These values are drawn independently
from publicly known distributions D; of support [0, Umax]. We assume that these distributions
are continuous. Let the density function of D; be denoted by f;. Let the cumulative distribution
function be denoted by F;. That is,

t
Fi(t) = / At = Priy <]
=

We seek to design an allocation function z: R™ — [0, 1]” that maps bids to probabilities of
allocation with the constraint that ) ;. 2;(b) < 1. For today, we call this function = because f
is used for the probability density. We pretend the function x is differentiable. The calculations
remain correct although it is not.

Our main question today will be to find a truthful mechanism M = (z,p) that maximizes
E, [>;cnpi(v)] (among all truthful mechanisms).

That is, it is in each bidder’s interest to tell the true value. Assuming that bidders tell us
their true value, we want to maximize the revenue. This may sound a little strange: Why do we
insist on truthfulness? We will come to this.

2 Example: One Item, One Bidder

If we have only a single bidder and one item, there is not a lot that we can do. By Myerson’s
lemma, the allocation has to be monotone in the bid. That is, there has to be a value p* such
that we sell the item if b1y > p* and do not sell it otherwise. If Dy is the uniform distribution on
[0, 1], then the expected revenue of any p* € [0, 1] is

E, [p1(v)] =p"Pr vy > p*| =p*(1-p") ,

because we collect p* if and only if the item is sold. This term is maximized for p* = %
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3 Properties of the Revenue

Myerson’s Lemma gives us a characterization what properties the functions x and p have to
have. Namely, x has to be monotone and p follows the formula. These properties define the
constraints of the optimization problem that we are solving, namely to find z and p so as to

maximize E, [Y;cy pi(v)].
We first consider the payment of a single bidder keeping the other bids b_; fixed. For a fixed
value v;, Myerson’s Lemma tells us

pilvisboi) = [ bt bt
t

=0

Taking the expectation over v;, we get

Evi [ Z‘('UZ', b_z)] = / m:‘ fi(vi)pi(vi, b_i)dvi = / - fz('Uz) /,jj() tl‘;(t, b_i)dtdvi .

= v;=0

Fubini’s theorem tells us that we may switch the order of integration

/ " (o) / "t bs)dtdv; = / - ( / - fi(vi)dvi) b (b)Yt = / (L= By () )t (£, by )t
v. t=0 t v t

;=0 =0 =t =0

Now we do integration by parts: We differentiate (1 — F;(¢))t and get % (1-F@)) =

—fi(t)t + (1 — F;(t)). We integrate «}(t,b_;), for which [ /(¢,b_;)dt = x;(t,b_;), so

Ja = R@taieb-idt = (1= Fie)taitt.b-) — [ (<fi(0)+ (1= F(e) aalt,b-o)de

Overall this gives us

[0 = R b = [0 - @b Dkt - [ A0+ (- RO b

=0 t=0
=0-0
= [ (0= (@ = B ae bt
We now define ¢;(t) =t — 1}2%” and rename ¢ to v;. This way
Ey, [pi(vi, b-3)] =/ . fi(vi)pi(vi)wi(vi, b—i)dv; = By, [@;i(vi)zi(vi, b-3)]
V=

Now, we include the other bidders by assuming b_; = v_; (everybody bids truthfully) and
taking the expectation over v_;. Then we have

E, [pi(v)] = Ey [pi(vi)xi(v)] -

Taking the sum over all bidders and using linearity of expectation twice, we get

E, [Z pi(v)‘| Z E, pz Z E, SDz 'Uz $1 = Z SDZ Uz xz ]

1EN 1EN 1EN iEN

We observe that this problem looks a lot like the problem of maximizing social welfare. In
this case, we would have to find an allocation function = that maximizes Y ;cy viz;(v). This
we know is easy by selecting the bidder with the highest bid. The function };cn @i(v;)x;(v) is
called virtual welfare and each ¢;(v;) is called virtual value.
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Lemma 17.1. Let M = (xz,p) be a truthful single-parameter mechanism, then the expected
revenue equals the expected virtual welfare. That is,

E, [Z pi(v)] =E, [Z %(w)xi(v)] , where @;(t) =t — 1- k() ‘

iEN iEN fi(t)

Example 17.2. Let’s come back to our example with one bidder and one item. If the value is
distributed uniformly on [0, 1], then

1—1)1

filvy) =1 Fi(v1) = v p1(v1) = v — =20 —1 for vy €10,1]

So, the mechanism that sells at price p* has virtual welfare

201 -1 ifvy >p*
0 otherwise

¢1(v1)z1(v) = {

The expected virtual welfare is [ _ (201 — 1)dv; = p*(1 — p*).

v1=p*

4 Regular Distributions

Lemma [I7.1] tells us that maximizing the revenue is the same problem as maximizing the virtual
welfare. There is one thing that we have to keep in mind: The allocation rule x has to be
monotone in the bids. Therefore selecting the bidder with the highest (reported) virtual value is
not always guaranteed to be monotone. If it is, then by charging payments according to the
formula we get truthful mechanism.

The shape of the function ¢; depends on the distribution D;.

Definition 17.3. A distribution D; is regular if its associated virtual-value function @; is strictly
increasing.

You should be aware that the term regular is a little euphemistic. It is a reasonably strong
assumption that often is not satisfied. Fortunately, however, there are enough positive examples.

Definition 17.4. Define the virtual-welfare maximizing mechanism by allocation rule z* that
on input b maximizes Y ;e @i(bi)z; (b) and payments according to Myerson’s lemma.

Theorem 17.5. If all bidders’ distributions are regular, the virtual-welfare mazximizing mecha-
nism is truthful. Furthermore, it maximizes expected revenue among all truthful mechanisms.

Proof. The allocation rule z* is monotone if the distributions are regular. So it remains to show
revenue optimality. Let M = (x,p) be an arbitrary truthful mechanism. Let p* be the unique
payment function according to Myerson’s lemma that makes (z*, p*) truthful.

By Lemma [17.1] we have

E, [Z pz‘(v)] =E, | %(vi)wi(v)] and E, [Z pf(v)] =E, [Z %(Uz‘)ﬁ(v)]

1EN 1EN 1EN iEN

Furthermore Y,y wi(vi)xf (v) > Y icn wi(vi)xi(v) for any v by the definition of *. Taking the
expectation on both sides, this implies E, [>;cn p; (v)] > Ey [Xen pi(v)]. O

Now, what does it mean to maximize virtual welfare? If we sell a single item, the answer is
surprisingly simple.
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Lemma 17.6. In the case of a single-item auction, virtual welfare is mazximized by assigning
the item to the bidder of the highest reported virtual value if this value is positive. Otherwise the
item is left unallocated.

Proof. Consider any valuation profile v and any allocation z(v). If max;eny wi(v;) > 0 and
Yien Ti(v) <1, then

> i(vi)ai(v) < max ;(v;)
ieN iEN

which is exactly the virtual welfare of the above allocation rule. If max;en ¢i(v;) < 0, then

> gi(vi)zi(v) <0,

1EN

which is also the virtual welfare of the above allocation rule. So, in either case, the allocation
has maximum virtual welfare. O

Example 17.7. Consider the case that vy is drawn from the uniform distribution on [0, 1], vy
is drawn from the uniform distribution on [0,2]. This way

1—U1

filv1) =1 Fi(v1)) =n o1(v1) = v1 — =2 —1 for vy €0,1]

1 _ v2
Fy(vg) = 202 p2(v2) = v2 — —3 2 —2uy—2 for ve €10,2]

2

DN | =

fa(v2) =

If for example v = % and vy = 1, then @1(vy) = 3 and p3(v2) = 0. That is, bidder 1 wins

the item. He has to pay the smallest value t for which he is a winner. In this case t = %
If vy = % and va = 2 then ¢1(v1) = —% and pa(v2) = —3. Because both virtual values are
negative, nobody gets the item.
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