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So far, our attention in mechanism design focused on social welfare. That is, we wanted to
maximize the overall value of the allocation that we make. Today we move to a different objective
function, namely to maximize revenue. How can we sell an item so as to maximize the winner’s
payment?

This question is a lot different from maximizing social welfare. For example, assume that
we have only a single bidder. Maximizing social welfare is trivial (just give him the item) but
how do we make him pay as much as possible? If we have no idea of what the item could be
worth to him, he can just claim arbitrarily small numbers. Therefore, the standard model for
revenue maximizing is different: We assume that bidders’ values are drawn from publicly known
probability distributions. However, we do not know the realizations, meaning the actual values.
These are again private information.

1 Model
We again assume that there are n bidders; the set of all bidders is denoted by N . Each of the
bidders will report a bid bi. We sell a single item among these bidders. Each bidder i has a
private valuation vi ≥ 0 for being allocated the item. These values are drawn independently
from publicly known distributions Di of support [0, vmax]. We assume that these distributions
are continuous. Let the density function of Di be denoted by fi. Let the cumulative distribution
function be denoted by Fi. That is,

Fi(t) =
∫ t

t′=0
fi(t′)dt′ = Pr[vi ≤ t] .

We seek to design an allocation function x : Rn → [0, 1]n that maps bids to probabilities of
allocation with the constraint that

∑
i∈N xi(b) ≤ 1. For today, we call this function x because f

is used for the probability density. We pretend the function x is differentiable. The calculations
remain correct although it is not.

Our main question today will be to find a truthful mechanismM = (x, p) that maximizes
Ev [

∑
i∈N pi(v)] (among all truthful mechanisms).

That is, it is in each bidder’s interest to tell the true value. Assuming that bidders tell us
their true value, we want to maximize the revenue. This may sound a little strange: Why do we
insist on truthfulness? We will come to this.

2 Example: One Item, One Bidder
If we have only a single bidder and one item, there is not a lot that we can do. By Myerson’s
lemma, the allocation has to be monotone in the bid. That is, there has to be a value p∗ such
that we sell the item if b1 ≥ p∗ and do not sell it otherwise. If D1 is the uniform distribution on
[0, 1], then the expected revenue of any p∗ ∈ [0, 1] is

Ev [p1(v)] = p∗Pr [v1 ≥ p∗] = p∗(1− p∗) ,

because we collect p∗ if and only if the item is sold. This term is maximized for p∗ = 1
2 .
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3 Properties of the Revenue
Myerson’s Lemma gives us a characterization what properties the functions x and p have to
have. Namely, x has to be monotone and p follows the formula. These properties define the
constraints of the optimization problem that we are solving, namely to find x and p so as to
maximize Ev [

∑
i∈N pi(v)].

We first consider the payment of a single bidder keeping the other bids b−i fixed. For a fixed
value vi, Myerson’s Lemma tells us

pi(vi, b−i) =
∫ vi

t=0
tx′i(t, b−i)dt .

Taking the expectation over vi, we get

Evi [pi(vi, b−i)] =
∫ vmax

vi=0
fi(vi)pi(vi, b−i)dvi =

∫ vmax

vi=0
fi(vi)

∫ vi

t=0
tx′i(t, b−i)dtdvi .

Fubini’s theorem tells us that we may switch the order of integration∫ vmax

vi=0
fi(vi)

∫ vi

t=0
tx′i(t, b−i)dtdvi =

∫ vmax

t=0

(∫ vmax

vi=t
fi(vi)dvi

)
tx′i(t, b−i)dt =

∫ vmax

t=0
(1−Fi(t))tx′i(t, b−i)dt

Now we do integration by parts: We differentiate (1 − Fi(t))t and get d
dt ((1− Fi(t))t) =

−fi(t)t+ (1− Fi(t)). We integrate x′i(t, b−i), for which
∫
x′i(t, b−i)dt = xi(t, b−i), so∫

(1− Fi(t))tx′i(t, b−i)dt = (1− Fi(t))txi(t, b−i)−
∫

(−fi(t)t+ (1− Fi(t)))xi(t, b−i)dt .

Overall this gives us∫ vmax

t=0
(1− Fi(t))tx′i(t, b−i)dt = [(1− Fi(t))txi(t, b−i)]vmax

t=0︸ ︷︷ ︸
=0−0

−
∫ vmax

t=0
(−fi(t)t+ (1− Fi(t)))xi(t, b−i)dt

=
∫ vmax

t=0
(fi(t)t− (1− Fi(t)))xi(t, b−i)dt .

We now define ϕi(t) = t− 1−Fi(t)
fi(t) and rename t to vi. This way

Evi [pi(vi, b−i)] =
∫ vmax

vi=0
fi(vi)ϕi(vi)xi(vi, b−i)dvi = Evi [ϕi(vi)xi(vi, b−i)] .

Now, we include the other bidders by assuming b−i = v−i (everybody bids truthfully) and
taking the expectation over v−i. Then we have

Ev [pi(v)] = Ev [ϕi(vi)xi(v)] .

Taking the sum over all bidders and using linearity of expectation twice, we get

Ev

[∑
i∈N

pi(v)
]

=
∑
i∈N

Ev [pi(v)] =
∑
i∈N

Ev [ϕi(vi)xi(v)] = Ev

[∑
i∈N

ϕi(vi)xi(v)
]
.

We observe that this problem looks a lot like the problem of maximizing social welfare. In
this case, we would have to find an allocation function x that maximizes

∑
i∈N vixi(v). This

we know is easy by selecting the bidder with the highest bid. The function
∑

i∈N ϕi(vi)xi(v) is
called virtual welfare and each ϕi(vi) is called virtual value.
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Lemma 17.1. Let M = (x, p) be a truthful single-parameter mechanism, then the expected
revenue equals the expected virtual welfare. That is,

Ev

[∑
i∈N

pi(v)
]

= Ev

[∑
i∈N

ϕi(vi)xi(v)
]
, where ϕi(t) = t− 1− Fi(t)

fi(t)
.

Example 17.2. Let’s come back to our example with one bidder and one item. If the value is
distributed uniformly on [0, 1], then

f1(v1) = 1 F1(v1) = v1 ϕ1(v1) = v1 −
1− v1

1 = 2v1 − 1 for v1 ∈ [0, 1]

So, the mechanism that sells at price p∗ has virtual welfare

φ1(v1)x1(v) =
{

2v1 − 1 if v1 ≥ p∗

0 otherwise
.

The expected virtual welfare is
∫ 1

v1=p∗(2v1 − 1)dv1 = p∗(1− p∗).

4 Regular Distributions
Lemma 17.1 tells us that maximizing the revenue is the same problem as maximizing the virtual
welfare. There is one thing that we have to keep in mind: The allocation rule x has to be
monotone in the bids. Therefore selecting the bidder with the highest (reported) virtual value is
not always guaranteed to be monotone. If it is, then by charging payments according to the
formula we get truthful mechanism.

The shape of the function ϕi depends on the distribution Di.

Definition 17.3. A distribution Di is regular if its associated virtual-value function ϕi is strictly
increasing.

You should be aware that the term regular is a little euphemistic. It is a reasonably strong
assumption that often is not satisfied. Fortunately, however, there are enough positive examples.

Definition 17.4. Define the virtual-welfare maximizing mechanism by allocation rule x∗ that
on input b maximizes

∑
i∈N ϕi(bi)x∗i (b) and payments according to Myerson’s lemma.

Theorem 17.5. If all bidders’ distributions are regular, the virtual-welfare maximizing mecha-
nism is truthful. Furthermore, it maximizes expected revenue among all truthful mechanisms.

Proof. The allocation rule x∗ is monotone if the distributions are regular. So it remains to show
revenue optimality. LetM = (x, p) be an arbitrary truthful mechanism. Let p∗ be the unique
payment function according to Myerson’s lemma that makes (x∗, p∗) truthful.

By Lemma 17.1, we have

Ev

[∑
i∈N

pi(v)
]

= Ev

[∑
i∈N

ϕi(vi)xi(v)
]

and Ev

[∑
i∈N

p∗i (v)
]

= Ev

[∑
i∈N

ϕi(vi)x∗i (v)
]
.

Furthermore
∑

i∈N ϕi(vi)x∗i (v) ≥
∑

i∈N ϕi(vi)xi(v) for any v by the definition of x∗. Taking the
expectation on both sides, this implies Ev [

∑
i∈N p∗i (v)] ≥ Ev [

∑
i∈N pi(v)].

Now, what does it mean to maximize virtual welfare? If we sell a single item, the answer is
surprisingly simple.
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Lemma 17.6. In the case of a single-item auction, virtual welfare is maximized by assigning
the item to the bidder of the highest reported virtual value if this value is positive. Otherwise the
item is left unallocated.

Proof. Consider any valuation profile v and any allocation x(v). If maxi∈N ϕi(vi) ≥ 0 and∑
i∈N xi(v) ≤ 1, then ∑

i∈N

ϕi(vi)xi(v) ≤ max
i∈N

ϕi(vi) ,

which is exactly the virtual welfare of the above allocation rule. If maxi∈N ϕi(vi) ≤ 0, then∑
i∈N

ϕi(vi)xi(v) ≤ 0 ,

which is also the virtual welfare of the above allocation rule. So, in either case, the allocation
has maximum virtual welfare.

Example 17.7. Consider the case that v1 is drawn from the uniform distribution on [0, 1], v2
is drawn from the uniform distribution on [0, 2]. This way

f1(v1) = 1 F1(v1) = v1 ϕ1(v1) = v1 −
1− v1

1 = 2v1 − 1 for v1 ∈ [0, 1]

f2(v2) = 1
2 F2(v2) = 1

2v2 ϕ2(v2) = v2 −
1− v2

2
1
2

= 2v2 − 2 for v2 ∈ [0, 2]

If for example v1 = 3
4 and v2 = 1, then ϕ1(v1) = 1

2 and ϕ2(v2) = 0. That is, bidder 1 wins
the item. He has to pay the smallest value t for which he is a winner. In this case t = 1

2 .
If v1 = 1

3 and v2 = 2
3 then ϕ1(v1) = −1

3 and ϕ2(v2) = −2
3 . Because both virtual values are

negative, nobody gets the item.
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