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In this lecture we will continue our exploration of non-truthful mechanisms. We have already
got to know an equilibrium concept for settings of incomplete information last time. Today,
we will translate the smoothness concept that we have seen a few lectures ago from games to
mechanisms. Next time, we will use it to design simple, near-optimal mechanisms.

1 Basic Definitions
Recall our definition of a mechanism-design problem. There is a set N of n players and a set of
feasible outcomes X. Every player i ∈ N has a (private) valuation vi : X → R≥0 from a set of
possible valuations Vi. A mechanism M = (f, p) defines a set of bids Bi for each player i ∈ N
and consists of

• an outcome rule f : B → X, where B = B1 ×B2 × · · · ×Bn, and

• a payment rule p : B → Rn≥0. So far, we assumed that payments could be arbitrary real
numbers. Today, they have to be non-negative.

We say that the mechanism is direct if Bi = Vi for all i ∈ N , otherwise we say it is indirect. The
utility of bidder i on bid profile b ∈ B is given as ui(b, vi) = vi(f(b))− pi(b).

1.1 Complete Information

For a fixed choice of v, these utilities define a normal-form maximization game. If we assume
complete information, we study the equilibria of this game. For example, a pure Nash equilibrium
is a vector of strategies – in this case bids – such that no player wants to unilaterally deviate.

Definition 15.1 (Pure Nash Equilibrium). Given a fixed valuation profile v ∈ V , a profile of
bids b = (b1, . . . , bn) ∈ B is a pure Nash equilibrium (PNE) if for every player i ∈ N and every
deviation b′i ∈ Bi,

ui((bi, b−i), vi) ≥ ui((b′i, b−i), vi) .

Also the concepts of mixed Nash and (coarse) correlated equilibria still make sense here.
The goal is to choose an outcome x ∈ X that maximizes social welfare

∑
i∈N vi(x). We use

OPT (v) = maxx∈X
∑
i∈N vi(x) to denote the optimal social welfare. For a fixed bid vector b,

the mechanism achieves welfare SWv(b) =
∑
i∈N vi(f(b)) =

∑
i∈N ui(b, vi) +

∑
i∈N pi(b).

We define the Price of Anarchy for any given equilibrium concept as the worst possible ratio
between the optimal social welfare and the (expected) social welfare at equilibrium, that is

PoAEq = max
v∈V

max
B∈Eq(v)

OPT (v)
Eb∼B[SWv(b)]

,

where Eq(v) denotes the set of equilibria for the game induced by valuations v.
This ratio is always at least 1 because the optimal social welfare can never be smaller than

the social welfare in equilibrium. Ratios closer to 1 are better. Furthermore, we have again

1 ≤ PoAPNE ≤ PoAMNE ≤ PoACCE .
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1.2 Incomplete Information

Last time, we introduced the concept of games with incomplete information. Now, bidder i’s
valuation vi is drawn from a publicly known distribution Di. In a Bayes-Nash equilibrium,
players choose their strategies depending on their own valuation but not on the other players’
valuations.

Definition 15.2 (Bayes-Nash equilibrium). A (pure) Bayes-Nash equilibrium (BNE) is a profile
of bidding functions (βi)i∈N , βi : Vi → Bi such that for all i ∈ N , all vi ∈ Vi, and all b′i ∈ Bi

Ev−i∼D−i [ui(β(v), vi)] ≥ Ev−i∼D−i

[
ui((b′i, β−i(v)), vi)

]
,

where β(v) = (β1(v1), . . . , βn(vn)).

Also for this setting, we can define the Price of Anarchy

PoABNE = max
distribution D

max
β is BNE for D

Ev∼D [OPT (v)]
Ev∼D [SWv(β(v))] .

So, we now consider the worst choice of distributions, and, again, the worst equilibrium. The
value OPT (v) is now a random variable, therefore we take its expectation.

2 Recap: First-Price Auction
Last time, we showed that PoAPNE, PoABNE ≤ 2 in a first-price auction. Let us recap the
argument for pure Nash equilibria. The valuations v are fixed. We showed that for any b, we
have for all i ∈ N

ui

((
vi
2 , b−i

)
, vi

)
≥ vi

2 −max
i′

bi′ and ui

((
vi
2 , b−i

)
, vi

)
≥ 0 .

The first inequality follows by a simple case distinction: Either i wins the item with bid vi
2 ,

then the utility is vi − vi
2 = vi

2 . Or i loses, so then maxi′ bi′ ≥ vi
2 . The second inequality follows

because in any case the utility is non-negative. In combination, this gives us for any v and any b∑
i∈N

ui

((
vi
2 , b−i

)
, vi

)
≥ max

i∈N
ui

((
vi
2 , b−i

)
, vi

)
≥ max

i∈N

vi
2 −max

i∈N
bi = 1

2OPT (v)−
∑
i∈N

pi(b) .

(1)
We get that if b is a pure Nash equilibrium SWv(b) =

∑
i∈N ui(b, vi) +

∑
i∈N pi(b) ≥∑

i∈N ui((vi
2 , b−i), vi) +

∑
i∈N pi(b) ≥ 1

2OPT (v).

3 The Smoothness Framework
We define smooth mechanisms and show how smoothness implies that all equilibria of a mechanism
are close to optimal.

Definition 15.3 (Smooth Mechanism, simplified version). Let λ, µ ≥ 0. A mechanism M is
(λ, µ)-smooth if for any valuation profile v ∈ V for each player i ∈ N there exists a bid b∗i such
that for any profile of bids b ∈ B we have∑

i∈N
ui((b∗i , b−i), vi) ≥ λ ·OPT (v)− µ

∑
i∈N

pi(b) .

Note that, by the order of the quantifiers, b∗i may depend on the profile of valuations but
not on the bids. Equation (1) already shows that the single-item first-price auction is (1/2, 1)
smooth by setting b∗i = vi

2 .
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Observation 15.4. A single-item first-price auction is (1/2, 1)-smooth.

To get a little more intuition, let us consider the single-item all-pay auction. Everything
is the same as in the first-price auction except for the payments: Everybody pays his bid, no
matter if he wins or loses.

Theorem 15.5. A single-item all-pay auction is (1
2 , 2)-smooth.

Proof. Let j be a bidder with highest value vj . Set b∗j = vj/2 and b∗i = 0 for i 6= j. Consider an
arbitrary bid profile b ∈ B.

We show that always uj(b∗j , b−j) ≥ 1
2vj − 2 maxi 6=j bi. We distinguish two cases. If bidder j

wins the item in (b∗j , b−j), then his utility is vj − b∗j = 1
2vj . So, the bound is fulfilled because bids

are non-negative. If he does not win the item, then his utility is −1
2vj . As he loses, somebody

must outbid him, meaning that maxi 6=j bi ≥ 1
2vj . So, the bound holds as well.

Furthermore, by non-negativity of bids,
∑
i pi(b) =

∑
i bi ≥ maxi 6=j bi.

Finally, for all i 6= j, we have ui(b∗i , b−i) ≥ 0 because b∗i = 0 and therefore regardless of b−i
the bidder does not have to pay anything.

In combination, this gives us∑
i

ui(b∗i , b−i) ≥ uj(b∗j , b−j) ≥
1
2vj − 2 max

i
bi ≥

1
2vj − 2

∑
i

pi(b) = 1
2OPT (v)− 2

∑
i

pi(b) .

Therefore, this auction is (1
2 , 2)-smooth.

4 Price-of-Anarchy Bound for Full Information
To see how smoothness bounds the price of anarchy, we first consider the full-information case.
Here, the proof works just like for smooth games. To keep things simple, we consider pure Nash
equilibria only.

Theorem 15.6 (Syrgkanis and Tardos, 2013). If a mechanism M is (λ, µ)-smooth and players
have the possibility to withdraw from the mechanism then

PoAPNE ≤
max{µ, 1}

λ
.

Proof. Suppose bid profile b is a pure Nash equilibrium. This means that no player wants to
unilaterally deviate from the equilibrium bid to some other bid. That is,

ui((bi, b−i), vi) ≥ ui((b′i, b−i), vi) ,

for all players i ∈ N and bids b′i ∈ Bi.
Now in particular players do not want to deviate to the bid b∗i whose existence is guaranteed

by smoothness. Considering, for each player i ∈ N the deviation to b′i and summing over all
players, ∑

i∈N
ui((bi, b−i), vi) ≥

∑
i∈N

ui((b∗i , b−i), vi) ≥ λ ·OPT (v)− µ ·
∑
i∈N

pi(b) .

Since players have quasi-linear utilities ui(b, vi) = vi(f(b))−pi(b) or vi(f(b)) = ui(b, vi)+pi(b).
Using this we obtain ∑

i∈N
vi(f(b)) ≥ λ ·OPT (v) + (1− µ) ·

∑
i∈N

pi(b) .

Notice that the left-hand side is precisely the social welfare at equilibrium. So if µ ≤ 1 we
can bound (1− µ) ·

∑
i∈N pi(b) ≥ 0 and obtain∑

i∈N
vi(f(b)) ≥ λ ·OPT (v) ,
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which shows a Price of Anarchy of 1/λ = max{1, µ}/λ.
On the other hand, if µ > 1, we can use that players have the right to withdraw from

the mechanism and obtain a utility of zero to argue that ui(b) = vi(f(b)) − pi(b) ≥ 0 and so
pi(b) ≤ vi(f(b)). Since (1− µ) < 0 we obtain∑

i∈N
vi(f(b)) ≥ λ ·OPT (v) + (1− µ) ·

∑
i∈N

vi(f(b)) .

Subtracting (1− µ) ·
∑
i∈N vi(f(b)) and dividing by µ > 1 we obtain∑

i∈N
vi(f(b)) ≥ λ/µ ·OPT (v) ,

which again shows a Price of Anarchy bound of µ/λ = max{1, µ}/λ.

This argument extends to more general equilibrium concepts such as coarse correlated
equilibria. The only point where we used the equilibrium condition is when we argued that
players do not want to deviate from the equilibrium bid bi to some other bid b′i. In fact, the
specific deviations that we considered only depended on the valuation profile v and did not
depend on the bids b. Hence the exact same argument applies to coarse correlated equilibria
and shows a Price of Anarchy of max{1, µ}/λ.

5 Price-of-Anarchy Bound for Incomplete Information
Next, we turn to Bayes-Nash equilibria. Last time, we saw how to bound the Price of Anarchy
for Bayes-Nash equilibria in the case of a first-price auction. We used that bidder i would not
prefer bidding vi

2 instead of βi(vi) for any vi. This is exactly in the spirit of a smoothness-based
proof. The difficulty is that the deviation bid b∗i does not only depend on vi but also on the
other bidders’ valuations v−i. When we show smoothness of the all-pay auction, this is indeed
crucial. Interestingly, using a very smart argument, this is not a problem and we can still derive
the same bound.

Theorem 15.7. If a mechanism M is (λ, µ)-smooth and players have the possibility to withdraw
from the mechanism then

PoABNE ≤
max{µ, 1}

λ
.

Proof. We write out the dependence of b∗i on v explicitly as b∗(v) for this proof.
Let ṽ be any valuation profile. Because (βi)i∈N is a Bayes-Nash equilibrium, bidder i would

not prefer to unilaterally switch to strategy b∗i (vi, ṽ−i), that is

Ev−i [ui(β(v), vi)] ≥ Ev−i [ui((b∗i (vi, ṽ−i), β−i(v)), vi)]

for every vi and every ṽ. This is, in particular, true if ṽ is a random valuation profile, drawn
independently from the distributions that v is drawn from. We also take the expectation over vi
to get

Ev [ui(β(v), vi)] ≥ Ev,ṽ [ui((b∗i (vi, ṽ−i), β−i(v)), vi)] . (2)

This inequality is not surprising at all: Bidder i would not prefer to bid some other bid, which is
only based on some valuation for the other bidders that he imagined.

But in the following step, the magic happens. Note that v−i and ṽ−i are identically distributed.
Therefore, the expectation is the same if we swap them

Ev,ṽ [ui((b∗i (vi, ṽ−i), β−i(v)), vi)] = Ev,ṽ [ui((b∗i (v), β−i(ṽ)), vi)] .
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Let us have a closer look at what this means. On the left-hand side, we assumed that the bidders
except i just follow whatever the Bayes-Nash equilibrium tells them to do with respect to their
actual valuations. Bidder i just “hallucinates” some valuations ṽ−i and chooses a bid that is
good against this hallucination—which does not have any meaning with respect to the real
values v. On the right-hand side, things have flipped. Now, bidder i actually does the right
thing against v−i but the other bidders potentially do something strange: They are bidding
what the Bayes-Nash equilibrium tells them to do for a different valuation profile. The reason
why this is true is that ui does not depend on vi directly.

Fixing v and ṽ, β(ṽ) is just some bid profile. By the smoothness inequality, we therefore have∑
i∈N

ui((b∗i (v), β−i(ṽ)), vi) ≥ λOPT (v)− µ
∑
i∈N

pi(β(ṽ)) .

By linearity of expectation, this implies

∑
i∈N

Ev,ṽ [ui((b∗i (v), β−i(ṽ)), vi)] ≥ λEv [OPT (v)]− µEṽ
[∑
i∈N

pi(β(ṽ))
]

and in combination with Equation (2)

∑
i∈N

Ev [ui(β(v), vi)] ≥ λEv [OPT (v)]− µEṽ
[∑
i∈N

pi(β(ṽ))
]
.

Now, we use again that v and ṽ are identically distributed, which means that Eṽ [
∑
i∈N pi(β(ṽ))] =

Ev [
∑
i∈N pi(β(v))]. So

∑
i∈N

Ev [ui(β(v), vi)] ≥ λEv [OPT (v)]− µEv
[∑
i∈N

pi(β(v))
]
,

which implies because ui(b, vi) = vi(f(b))− pi(b)

∑
i∈N

Ev [vi(f((β(v)))] ≥ λEv [OPT (v)]− (µ− 1)Ev
[∑
i∈N

pi(β(v))
]
.

If µ ≤ 1, then we are done. Otherwise, we use again ui(β(vi)) = vi(f(β(v))) − pi(β(v)) ≥ 0
because bidders can withdraw from the mechanism and so pi(β(v)) ≤ vi(f(β(v))). This again
implies ∑

i∈N
Ev [vi(f((β(v)))] ≥ λ

µ
Ev [OPT (v)] ,

which is what we claimed.
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