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Today, we will consider a subclass of combinatorial auctions. Our goal will be to design
mechanisms that are truthful, run in polynomial time, and yield good approximation guarantees.

The subclass will be a single-parameter settings, for which we already know by Myerson’s
Lemma that we have to confine ourselves to monotone outcome rules.

1 Combinatorial Auctions

Recall combinatorial auctions.

Definition 12.1 (Combinatorial Auction). In a combinatorial auction, a set of m items M
shall be allocated to a set of n bidders N'. The bidders have private values for bundles of items.
The goal is to mazimize social welfare.

e Feasible allocations: X = {(S1,...,S,) € 2M)"| 8N S; =0,i # j}
e Valuation functions: v;: 2M — Rsq, i € N (private)
o Objective: Mazimize social welfare > 71 v;(.S;)

We will generally assume free disposal, i.e., v;(S) > v;(T) for T C S, and that valuations are
normalized, i.e., v;(0) = 0.

We will focus on the case where each bidder is interested in a single bundle of items. We will
call these bidders single minded.

Definition 12.2 (Single-Minded Bidders). Bidders are called single minded if, for every bidder
i € N, there exists a bundle S; C M and a value v} € R>q such that

¥ of T D S*

un = [t 1728

0  otherwise.
We call a bidder that is granted his bundle a winner, and we say that this bidder wins the bundle.

We will further assume that the bundle S; that bidder 7 is interested in is public and only
the valuation v is private. This turns the problem into a single-parameter problem, to which
our previous results apply.

Example 12.3 (Single-Minded Combinatorial Auction). There are two items a and b and three
bidders Red, Green, and Blue. Red has a value of 10 for {a}, Green has a value of 14 for the set
{a, b}, and Blue has a value of 8 for {b}. Social welfare is maximized by allocating {a} to Red
and {b} to Blue.

Figure 1: Single-minded CA instance from Example The items are shown as black rectangles
and the bundles as color-coded ellipses.
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2 Hardness and Hardness of Approximation

A first observation is that we cannot hope to get an exact solution because the allocation problem
is NP-hard. Note that this is purely an optimization question, the incentives do not matter at
all.

Theorem 12.4 (Lehmann, O’Callaghan, Shoham 1999). The allocation problem among single-
minded bidders is NP-hard.

Proof sketch. We will prove the claim by reduction from independent set. Consider a graph
G = (V, E). Each node is represented by a bidder. Each edge is represented by an item. For
bidder i, set Sf = {e € E | i € e} and v} = 1.

Note that a set of bidders W corresponds to an independent set if and only if their sets S
are disjoint, that is, if and only if W is a feasible set of winners. This implies that there is an
independent set of size x if and only if there is an allocation (i.e. a set of winners W) such that

Yiew Vi = . O

Due to this hardness result, we will consider approximation algorithms. We call an algorithm
an a-approximation, if for the solution x computed by the algorithm on input (v;);enr, we have
Sienvi@) > Lmaxes e vila).

Unfortunately, the same reduction actually implies a hardness of approximation result in
terms of the number of items m. A more recent results shows a lower bound in terms of the
maximum bundle size of any bidder, d = max;|S;|.

Theorem 12.5 (Lehmann, O’Callaghan, Shoham 1999; Hastad 1999). There is no polynomial-
time algorithm for approximating the optimal allocation among single-minded bidders to within a
factor of mY/2=¢, for any € > 0, unless NP = ZPP.

Theorem 12.6 (Hazan et al. 2006). Approximating the optimal allocation among single-minded

bidders to within a factor of O (&), is NP-hard.

The class ZPP, for zero-error probabilistic polynomial time, is the subclass of NP consisting
of those sets L for which there is some constant ¢ and a probabilistic Turing machine M that on
input x runs in expected time O(|z|) and outputs 1 if and only if x € L. More important for our
purposes than the precise definition of the complexity class ZPP, is the fact that a conditional
hardness result based on the assumption that ZPP % NP is considered strong evidence of
computational intractability.

3 Greedy Mechanisms for Single-Minded CAs

A natural question in light of the hardness results is whether we can find polynomial-time
algorithms that match the lower bounds. In particular, is there a separation between the best
algorithm subject to polynomial-time and the best monotone algorithm?

The answer to this question due to Lehmann, O’Callaghan, and Shoham is one of the
foundational results of the field Algorithmic Game Theory: With respect to both parameters,
the total number of items and the maximum bundle size, simple monotone greedy algorithms
yield optimal approximation results.

Both algorithms use a carefully designed scoring function to rank the bidders. They then go
through the bidders and greedily accept the next bidder in the ranked list, removing all future
bidders that conflict with it.

Before we discuss the two algorithms let us first recall what truthful payments in a monotone
algorithm for a setting like ours should look like.



Algorithmic Game Theory, Summer 2019 Lecture 12 (page 3 of )

Figure 2: Challenge instance for Greedy-by-Value

Definition 12.7 (Threshold Payments). For an allocation rule for the single-minded CA problem
denote by W (b) the set of winners when the bids are b. If the allocation rule is monotone we
define the threshold bid 7;(b—;) for player i against bids b_; of the bidders other than i as the
smallest bid such that i € W (b;,b_;), that is

Ti(b,i) = 1nf{bl | 1€ W(bl,b,Z)} .

We first consider the algorithm that yields a good approximation with respect to the maximum
bundle size d = max;ecn|S]].

Greedy-by-Value
1. Re-order the bids such that b] > b5 > --- > b}.
2. Initialize the set of winning bidders to W := 0.
3. Fori=1tondo: If S NUjew S5 =0, then W := W U {i}.

Example 12.8. Consider the instance from Ezample[12.3. The ranking computed by Greedy-
by-Value is Green, Red, Blue. Green is considered first and accepted, which leads to the removal

of both Red and Blue. Green’s threshold bid is 10.

Proposition 12.9 (Folklore). Greedy-by-Value is a d-approxzimation. It is monotone, so charging
threshold bids yields a truthful mechanism.

Proof. 1t is not difficult to see that the Greedy-by-Value algorithm is monotone. For every
bidder 7 fixing the bids b* ; of the bidders other than %, player i’s outcome is determined by the
position in the sorted list of bids of the other players. By increasing his bid b], bidder ¢ can only
move further to the front of the sorted list of all bids.

The approximation guarantee follows by a simple charging argument. Let W be the set of
bidders selected by the algorithm and let OPT be the optimal solution. For i € W, let

OPT; = {j € OPT,j >i| S; N Sj +#0} .

That is, OPT; contains the indices of the bidders j > i that are in OPT and get blocked if we
accept ¢. Note that if i € OPT then OPT; = {i}. Each j € OPT is included in at least one set
OPT,; for i € W for the following reason: If j & OPT; for i € W with i < j, then all items in
S} are still available when reaching bidder j in the execution. So, j would be accepted by the
algorithm and, hence, j € W and j € OPTj}. Therefore, we can write

S ey Y on

JjEOPT €W jeOPT;

Next, we have |OPT;| < |Sf| < d. This is due to the fact that the sets ST for j € OPT; are
disjoint but each have a non-empty intersection with S;. Furthermore, by the greedy ordering
b; < b for j € OPT;. Therefore

o< > > <> d-bi=d-> b . O

jEOPT i€EW jeOPT; eWw ieW
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Figure 3: Challenge instance for Greedy-by-Sqrt-Value-Density

That the approximation guarantee can be as bad as d can be seen from examples such as the
one in Figure 2l Assume w.lo.g. that m is a multiple of d. Every set of d items is wanted by a
distinct “big” bidder, who has a value of 1+ € for it. Each of the d items this bidder is interested
in is requested by a distinct “small” bidder, each of which has a value of 1. Greedy-by-Value
will accept all the big bidders resulting in welfare m/d - (1 + €), while accepting all small bidders
would have social welfare of m.

The same example that we used to establish a lower bound of d for Greedy-by-Value, also
shows a lower bound of m. This is considerably worse than our lower bound of \/m on what can
be achieved with a polynomial-time algorithm.

Our next algorithm avoids the trap in which our Greedy-by-Value algorithm stepped by
normalizing bids with their bundle size. More specifically, it divides each bid by the square root
of the bundle size.

Greedy-by-Sqrt-Value-Density

1. Re-order the bids such that I T

VISTE = VIS5l = T VIsiD
2. Initialize the set of winning bidders to W := 0.
3. Fori=1ton do: If S; NU;ew S} =0, then W := W U {i}.

Example 12.10. Consider again the instance from Example[12.3. The ranking computed by
Greedy-by-Sqrt- Value-Density is 10 > 14/v/2 > 8. So Red is considered first and accepted. This
leads to the removal of Green. Afterwards Blue is accepted. The threshold bid for Red is 14/+/2,
for Blue it is zero.

Theorem 12.11 (Lehmann, O’Callaghan, Shoham 1999). Greedy-by-Sqrt-Value-Density is a
/m-approximation. It is monotone, so charging threshold bids makes it a truthful mechanism.

Proof. That Greedy-by-Sqrt-Value-Density is monotone can be shown by essentially the same
argument that showed that Greedy-by-Value is monotone. Holding a bidder and the bids of
the other bidders fixed, the bidder faces a ranked list of bids. Its position in this sorted list
determines whether he wins or not. A higher bid can only improve its position.

To establish an upper bound on the approximation guarantee we again write W and OPT
for the set of winners selected by the algorithm and the optimal one. Again, we define

OPT; ={j € OPT,j >i|S;nS;#0} .

And we can write

S ey Yo

JEOPT i€EW jEOPT;
So, if we can show > ;copr, b; < /m - b, we are done.
As by <\ /|S3]- b7 /4/|SF], for j € OPT;, we obtain

> b < > /s

JEOPT; |S¥| jeort:

b




Algorithmic Game Theory, Summer 2019 Lecture 12 (page 5 of )

Next we will show that > ;copp \/[SF] < v/m - /ISf[. To this end, we will use that the
function /- is concave. Therefore, by Jensen’s inequality, we have for all y1,...,y, > 0 that

%Zi:l Ve < \/%Zf;:l yr and therefore Zi:l Ve < \/KZf;:l Yr. S0, we get
> sl < wom- > 18l
J

JEOPT; i€cOPT;

Now |OPT;| < [S| since every S7, for j € OPT;, intersects S} and these intersections are
disjoint. Furthermore, }~;copr, |S7| < m since OPT; is an allocation.
We obtain,

>, b < IS |< o \IOPT| - | > |85 <bivm
JEOPT; \/ il JjEOPT, JEOPT;

To obtain a lower bound of \/m on the approximation guarantee we consider instances such
as the one given in Figure 3| There is one “big” bidder with a bundle size of m and a value of
vm + e and m bidders, one for each item, with a bundle size and a value of 1. Greedy-by-Sqrt-
Value-Density accepts the big bidder for a social welfare of \/m + €, while accepting all small
bidders would have led to a social welfare of m. O

We conclude that with respect to both quality measures, number of items m and maximum
bundle size d = max; | S|, insisting on monotonicity did not lower our ability to obtain a near
optimal outcome.
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