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One of the main goals of algorithmic game theory is to quantify the performance of a system
of selfish agents. Usually the “social cost” incurred by all players is higher than if there is a
central authority taking charge to minimize social cost. We will develop tools that will allow us
to (upper and lower) bound the potential increase.

Here we will define social cost as the sum of all players’ cost; formally, for a state s let
SC(s) =

∑
i∈N ci(s) denote the social cost of s. Sometimes it makes more sense to consider the

maximum cost incurred by any player.

1 Motivating Example

Example 8.1 (Pigou’s Example, Discrete Version). Consider the following symmetric network
congestion game with four players.

s t

1, 2, 3, 4

4, 4, 4, 4

There are five kinds of states:

(a) all players use the top edge, social cost: 16

(b) three players use the top edge, one player uses the bottom edge, social cost: 13

(c) two players use the top edge, two players use the bottom edge, social cost: 12

(d) one player uses the top edge, three players use the bottom edge, social cost: 13

(e) all players use the bottom edge, social cost: 16

Observe that only states of kind (a) and (b) can be pure Nash equilibria. The social cost,
however, is minimized by states of kind (c). Therefore, when considering pure Nash equilibria,
due to selfish behavior, we lose up to a factor of 16

12 and at least a factor of 13
12 .

More generally, we refer to the worst-case ratio between the social cost at equilibrium and
the optimal social cost as the price of anarchy.

Definition 8.2. Given a cost-minimization game, let PNE ⊆ S be the set of all states that are
pure Nash equilibria. The price of anarchy for pure Nash equilibria is defined as

PoAPNE =
maxs∈PNE SC(s)

mins∈S SC(s)
.

2 Tight Bound for Affine Delay Functions

We next provide a tight bound on the price of anarchy for (non-decreasing) affine delay functions
of the form dr(k) = ar · k + br, where ar, br ∈ Z≥0.
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Theorem 8.3. In every congestion game with affine delay functions, the price of anarchy for
pure Nash equilibria is upper bounded by 5

2 = 2.5.

Proof. Let s ∈ PNE be a pure Nash equilibrium and let s∗ be a state that minimizes social cost.
We have to show SC(s) ≤ 5

2SC(s∗).
Note that, as s is a pure Nash equilibrium, we have ci(s) ≤ ci(s∗i , s−i). This gives us

SC(s) =
∑
i∈N

ci(s) ≤
∑
i∈N

ci(s
∗
i , s−i) .

In the remainder, we will show that∑
i∈N

ci(s
∗
i , s−i) ≤

5

3
· SC(s∗) +

1

3
SC(s) . (1)

This then implies the desired bound.
By definition, we have

ci(s
∗
i , s−i) =

∑
r∈s∗i

dr(nr(s
∗
i , s−i)) .

Furthermore, as all dr are non-decreasing, we have dr(nr(s
∗
i , s−i)) ≤ dr(nr(s) + 1). This way,

we get ∑
i∈N

ci(s
∗
i , s−i) ≤

∑
i∈N

∑
r∈s∗i

dr(nr(s) + 1) .

By exchanging the sums, we have∑
i∈N

∑
r∈s∗i

dr(nr(s) + 1) =
∑
r∈R

∑
i:r∈s∗i

dr(nr(s) + 1) =
∑
r∈R

nr(s
∗)dr(nr(s) + 1) .

To simplify notation, we write nr for nr(s) and n∗r for nr(s
∗). Recall that delays are dr(nr) =

arnr + br. In combination, we get∑
i∈N

ci(s
∗
i , s−i) ≤

∑
r∈R

n∗r(ar(nr + 1) + br) . (2)

This we will have to bound in terms of

SC(s∗) =
∑
r∈R

n∗r(arn
∗
r + br) and SC(s) =

∑
r∈R

nr(arnr + br) .

The following lemma comes to our rescue.

Lemma 8.4 (Christodoulou, Koutsoupias, 2005). For all integers y, z ∈ Z≥0 we have

y(z + 1) ≤ 5

3
· y2 +

1

3
· z2 .

Proof. The case y = 0 is trivial.
Next, we turn to the case y = 1. Note that, as z is an integer, we have (z − 1)(z − 2) ≥ 0.

Therefore, we have
z2 − 3z + 2 = (z − 1)(z − 2) ≥ 0 ,

which implies

z ≤ 2

3
+

1

3
z2 ,
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and therefore

y(z + 1) = z + 1 ≤ 5

3
+

1

3
z2 =

5

3
y2 +

1

3
z2 .

Finally, consider the case y > 1. We now use

0 ≤

(√
3

4
y −

√
1

3
z

)2

=
3

4
y2 +

1

3
z2 − yz .

Using y ≤ y2

2 , we get

y(z + 1) = yz + y ≤ 3

4
y2 +

1

3
z2 +

1

2
y2 ≤ 5

3
y2 +

1

3
z2 .

Let us consider the term in Equation (2) for a fixed r ∈ R. We have

n∗r(ar(nr + 1) + br) = arn
∗
r(nr + 1) + brn

∗
r .

Lemma 8.4 implies that

n∗r(nr + 1) ≤ 5

3
(n∗r)

2 +
1

3
n2r .

Thus, we get

n∗r(ar(nr + 1) + br) ≤
5

3
ar(n

∗
r)

2 +
1

3
arn

2
r + brn

∗
r

≤ 5

3
ar(n

∗
r)

2 +
5

3
brn
∗
r +

1

3
arn

2
r +

1

3
brnr

=
5

3
(arn

∗
r + br)n

∗
r +

1

3
(arnr + br)nr ,

where in the second step we used that br ≥ 0. Summing up these inequalities for all resources
r ∈ R, we get∑

r∈R
n∗r(ar(nr + 1) + br) ≤

5

3

∑
r∈R

n∗r(arn
∗
r + br) +

1

3

∑
r∈R

nr(arnr + br)

=
5

3
· SC(s∗) +

1

3
· SC(s) ,

which shows Equation (1).

3 Lower Bound

Theorem 8.5. There are congestion games with affine delay functions whose price of anarchy
for pure Nash equilibria is 5

2 .

Proof sketch. We consider the following (asymmetric) network congestion game. Notation 0 or
x on an edge means that dr(x) = 0 or dr(x) = x for this edge.

u

v w

x

0

x

0

x

x
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There are four players with different source sink pairs. Refer to this table for a socially
optimal state of social cost 4 and a pure Nash equilibrium of social cost 10.

player source sink strategy in OPT cost in OPT strategy in PNE cost in PNE

1 u v u→ v 1 u→ w → v 3

2 u w u→ w 1 u→ v → w 3

3 v w v → w 1 v → u→ w 2

4 w v w → v 1 w → u→ v 2

4 Other Equilibrium Concepts

To extend the notion of price of anarchy to other equilibrium concepts, we assume that there
is a set Eq of probability distributions over the set of states S, which correspond to equilibria.
In the case of pure Nash equilibria, each of these distributions concentrates all its mass on a
single point. Again we set SC(s) =

∑
i∈N ci(s) but depending on the application it may also

make sense to replace the sum by a maximum.

Definition 8.6. Given a cost-minimization game, let Eq be a set of probability distributions
over the set of states S. For some probability distribution p, let SC(p) =

∑
s∈S p(s)SC(s) be

the expected social cost. The price of anarchy for Eq is defined as

PoAEq =
maxp∈Eq SC(p)

mins∈S SC(s)
.

Given the respective equilibria exist, we have

1 ≤ PoSPNE ≤ PoAPNE ≤ PoAMNE ≤ PoACE ≤ PoACCE .

Example 8.7. Recall the game Chicken, in which two drivers are driving towards an intersec-
tion. They can either cross (C) or stop (S). If both cross, they crash and have a high cost.

C(ross) S(top)

C(ross)
100 1

100 0

S(top)
0 1

1 1

The only two pure Nash equilibria are (C, S) and (S, C), which are both socially optimal.
So PoAPNE = 1. However, there is another, symmetric mixed Nash equilibrium, in which both
players cross with 1

100 probability and stop with 99
100 probability. For this probability distribution

p, we have SC(p) = 1
100 ·

1
100 · (100 + 100) + 2 · 1

100 ·
99
100 · (1 + 0) + 99

100 ·
99
100 · (1 + 1) = 1.9801. So

PoAMNE = 1.9801.

5 Smooth Games

A very helpful technique to derive upper bounds on the price of anarchy in all these equilibrium
concepts is smoothness.

Definition 8.8. A game is called (λ, µ)-smooth for λ > 0 and µ < 1 if, for every pair of states
s, s∗ ∈ S, we have ∑

i∈N
ci(s

∗
i , s−i) ≤ λ · SC(s∗) + µ · SC(s) .
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Observe that this condition needs to hold for all states s, s∗ ∈ S, as opposed to only pure
Nash equilibria or only social optima. We consider the cost that each player incurs when
unilaterally deviating from s to his strategy in s∗. If the game is smooth, then we can upper-
bound the sum of these costs in terms of the social cost of s and s∗.

Effectively, we already proved the following theorem when we were bounding the price of
anarchy for pure Nash equilibria.

Theorem 8.9. Every congestion game with affine delay functions is
(
5
3 ,

1
3

)
-smooth.

From such a bound, getting a bound on the Price of Anarchy is easy: If s is a pure Nash
equilibrium and s∗ is socially optimal, then

SC(s) ≤
∑
i∈N

ci(s
∗
i , s−i) (as s is a pure Nash equilibrium)

≤ λ · SC(s∗) + µ · SC(s) (by smoothness)

On both sides subtract µ · SC(s), this gives

(1− µ) · SC(s) ≤ λ · SC(s∗)

and rearranging yields
SC(s)

SC(s∗)
≤ λ

1− µ
.

But the argument does not stop here: Smoothness directly gives a bound even for coarse
correlated equilibria.

Theorem 8.10. In a (λ, µ)-smooth game, the PoA for coarse correlated equilibria is at most

λ

1− µ
.

Proof. Let s be distributed according to a coarse correlated equilibrium p, and let s∗ be an
optimum solution, which minimizes social cost. Note that SC(p) = Es∼p [SC(s)]. Then:

Es∼p [SC(s)] =
∑
i∈N

Es∼p [ci(s)] (by linearity of expectation)

≤
∑
i∈N

Es∼p [ci(s
∗
i , s−i)] (as p is a CCE)

= Es∼p

[∑
i∈N

ci(s
∗
i , s−i)

]
(by linearity of expectation)

≤ Es∼p [λ · SC(s∗) + µ · SC(s)] (by smoothness)

On both sides subtract µ ·Es∼p [SC(s)], this gives

(1− µ) ·Es∼p [SC(s)] ≤ λ · SC(s∗)

and rearranging yields
Es∼p [SC(s)]

SC(s∗)
≤ λ

1− µ
.

That is, in a (λ, µ)-smooth game, we have

PoAPNE ≤ PoAMNE ≤ PoACE ≤ PoACCE ≤
λ

1− µ
.

For many classes of games, there are choices of λ and µ such that all relations become equalities.
These games are referred to as tight. We have already seen one such example: All congestion
games with affine cost functions are (53 ,

1
3)-smooth, which implies PoACCE ≤ 5

2 but there is an
example in which PoAPNE = 5

2 .
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