Algorithmic Game Theory, Summer 2019 Lecture 7 (5| pages)

Minimizing External Regret

Thomas Kesselheim Last Update: May 16, 2019

Last time, we got to know correlated equilibria and coarse correlated equilibria. We showed
that if all players use a no-external-regret algorithm to update their strategy choices, the average
history of play will converge to a coarse correlated equilibrium. The only missing piece is: How
do these algorithms work?

1 Problem Statement

There is a single player playing 1" rounds against an adversary, trying to minimize his cost. In

each round, the player chooses a probability distribution over N strategies (also termed actions

here). After the player has committed to a probability distribution, or mixed strategy as we

will say, the adversary picks a cost vector fixing the cost for each of the N strategies.
Inround t =1,...,T, the following happens:

e The player picks a probability distribution p® = (pgt), cel p%)) over his strategies.

e The adversary picks a cost vector () = (ﬁgt), ... ,6%)), where KZ(.t) € [0,1] for all 4.

e A strategy a¥ is chosen according to the probability distribution p®. The player incurs
this strategy’s cost and gets to know the entire cost vector.

What is the right benchmark for an algorithm in this setting? The best action sequence
in hindsight achieves a cost of Z;le min;e (] El(»t) . However, getting close to this number is
generally hopeless as the following example shows.

Example 7.1. Suppose N = 2 and consider an adversary that chooses () = (1,0) ifpgt) >1/2
and () = (0,1) otherwise. Then the expected cost of the player is at least T'/2, while the best
action sequence in hindsight has cost 0.

Instead, we will swap the sum and the minimum, and compare to ngl =E [minie[N Zthl égt) .

That is, instead of comparing to the best action sequence in hindsight, we compare to the

best fized action in hindsight. The expected cost of some algorithm A is given as Lf) =

E [Zle Eit()t)} The difference of this cost and the cost of the best single strategy in hindsight

is called external regret.

Definition 7.2. The expected external regret of algorithm A is defined as REL‘T) = Lf) — ng)n

Definition 7.3. An algorithm is called no-external-regret algorithm if for any adversary and

all T we have REAT) =o(T).

This means that the average cost per round of a no-external-regret algorithm approaches
the one of the best fixed strategy in hindsight or even beats it.

2 The Multiplicative-Weights Algorithm

By the definition it is not even clear that there are no-external-regret algorithms. Fortunately,
there are. In this section, we will get to know the multiplicative-weights algorithm (also known
as randomized weighted majority or hedge).

Algorithmic Game Theory, Summer 2019 Lecture 7 (page 2 of)

The algorithm maintains weights wz@ , which are proportional to the probability that strategy

1 will be used in round t. After each round, the weights are updated by a multiplicative factor,
which depends on the cost in the current round.

Let n € (0, 5]; we will choose n later.
1)

e Initially, set w;”’ = 1, for every i € [N].

e At every time t,

— Let W = val w(t)

— Choose strategy ¢ with probability pgt) = wgt) / w,
— Set wgtﬂ) = wgt) (11— n)zz@.

Let’s build up some intuition for what this algorithm does. First suppose E € {0,1}.
Strategies with cost 0 maintain their weight, while the weight of strategies with cost 1 is multi-
plied by (1 —7). So the weight decays exponentially quickly in the number of 1’s. Next consider
the impact of 1. Setting n to zero means that we pick a strategy uniformly at random and
continue to do so, on the other hand the higher 7 the more we punish strategies which incurred
a high cost. So we can think of 1 as controlling the tradeoff between exploration (small n) and
exploitation (large 7).

Theorem 7.4 (Littlestone and Warmuth, 1994). The multiplicative-weights algorithm, for any
choices by the adversary of cost vectors from [0,1], guarantees

In N
Liy < (1+77)L()+L77 :

mwn

Ly <L L 2yTa N .

Setting n = 4/ lnTN yields
In N

Corollary 7.5. The multiplicative-weights algorithm with n = 7 has external regret at
most 2/ T In N = o(T) and hence is a no-external-regret algorithm.

3 Non-Adaptive Adversary

It seems particularly difficult to analyze the algorithm because the adversary is allowed to react
to the player’s choices. It will turn out that this does not actually matter. But as a first step, let
us ignore entirely this adaptivity and let us assume that the adversary has to fix the sequence
of cost vectors first. We will call this non-adaptive sequence /), ... /(T) first. Note that this

immediately fixes the probability vectors pW o pT) as well. They are not random anymore.
Proposition 7.6. For every fixed non-adaptive sequence g(l), .. ,E(T) of cost vectors from [0, 1],
MW guarantees

Ly < (1 +n)L0 + 1“77N ,
where L ZtT lﬁzt) is the sum of costs of strategy i and LMW Zt 1 ZZ 1pZ Z() is the

empected sum of costs of MW.

Proof. Let us analyze how the sum of weights W) decreases over time. It holds

N

W(H'l) _ Z t+1) . Zwt £<t) '

=1

Algorithmic Game Theory, Summer 2019 Lecture 7 (page 3 of)

Observe that (1—n)¢ = (1 —/n), for both ¢ =0 and ¢ = 1. Furthermore, (1 — n) is a convex
function in £. For £ € [0, 1] this implies (1 —7)! < (1 —/n).

No[—=
&~

This gives us
N . N .
Wt < ngt)(l 762(;)77) — W 7772%@)[2(;)
i=1 i=1

Let gl(\f[)w denote the expected cost of MW in step ¢t. It holds g&)w = va 1 Z / w®
Substituting this into the bound for W+ gives

WD < w® il w® — wOa iy .

As a consequence,

T T
W T+ H (1 —nil) = N]Ja -)
=1

This means that the sum of weights after step T can be upper bounded in terms of the expected
costs of MW. On the other hand, the sum of weights after step T' can be lower bounded in terms
of the costs of the best strategy as follows:

T
(T+1) (T+1)y _ (1) N STy A
WD > max (™) = max (wz thl W) = max (L-pZ=0) = @

Combining the bounds and taking the logarithm on both sides gives us

T
L m—n) < mN)+ > (1 -nlfy) -
t=1

In order to simplify, we will now use the following estimation
—z—22 < In(l—2) < -z,

which holds for every z € [0, 3].

Algorithmic Game Theory, Summer 2019 Lecture 7 (page 4 of)

This gives us

Finally, solving for L%\/{\gv gives

)) N
i < (1+n)L<T)+nT. 0

min

4 Adaptive Adversary

The above argument works against a non-adaptive adversary. That is, the sequence of cost vec-
tors /1) ... ¢(T) is fixed before the player does anything. Somewhat surprisingly, the guarantee
continues to hold even if the adversary can adapt to the player’s decisions. Note that this way
the point of comparison, the best strategy in hindsight, changes depending on the choices made
by the player.

Proposition 7.7. The multiplicative-weights algorithm, for any (possibly adaptive) choices by

the adversary of cost vectors from [0, 1], guarantees

In N
<+ +nT .

min

Proof. We will design a non-adaptive adversary that simulates the adaptive adversary. It gen-

erates a random but non-adaptive sequence (D 0T guch that E [il(\?}v} = Ll(\f\),v and
E L] = Lo

The first step is to simplify LI(\;‘IF\),v =E [Zf 0 ¢

O] = S B [9,]. The difficulty is that
fflt()t) depends on all cost vectors and actions taken so far as well as the randomization in the
current round. However, if we keep everything fixed that happened in previous rounds, the p(*)

vector is fixed and the probability that action j is played is pg.t). Stated differently, we can write

out the conditional expectation as

N
E [0, | 60, 00,00, at0] = 3060
j=1

This is true for every conditional expectation. We can get rid of the conditioning but just taking
the expectation over the conditioned random variables. So

N
JEAREL

j=1
and by linearity of expectation
. T T N -
Ly =E pL (t)] ZE [(r)] ZE ij =B Zng')é()
t=1 j= t=1 j=1

Observe that the argument of the expectation is Zt 1 N E(t) does not even talk about

j=1Pj
the actually chosen actions a®) but only about the probability vectors p(®). These probability
vectors are generated in a deterministic way.

Algorithmic Game Theory, Summer 2019 Lecture 7 (page 5 of)

This makes it possible for the non-adaptive adversary to simulate the adaptive one by antic-
ipating the decisions of the algorithm. In more detail, a non-adaptive adversary can generate a
sequence /) ... /(1) a5 follows. To determine £, it computes pV), ..., p®), which are deter-
mined by ¢, 00D Tt also draws an imaginary a(~1). For ¢® it then uses the exact vector
¢® that the adaptive adversary would use when adapting to p™V), ..., p® and a®, ... a1,

we have EI(\RV <1+ n)f/(T) + BN Furthermore, this sequence has the

min n

By Proposition
property that E [f)ﬁ&v} = L%\RV and E [E(T)

min

_ 7D :
} = L, ;, because they are generated in the same

stochastic process.]

Recommended Literature

e Chapter 4 in the AGT book.

e Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/f13/1/117.pdf
and lecture video https://youtu.be/ssAEgJKRe90

e N. Littlestone, M. Warmuth. The Weighted Majority Algorithm. Information and Com-
putation 108(2):212-261, 1994.

http://theory.stanford.edu/~tim/f13/l/l17.pdf
https://youtu.be/ssAEgJKRe9o

	Problem Statement
	The Multiplicative-Weights Algorithm
	Non-Adaptive Adversary
	Adaptive Adversary

