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Recall that last lecture we introduced normal-form games. We defined them as cost-
minimization games but often it is more natural that player want to maximize their payoff or
utility rather than minimizing their cost.

Definition 4.1. A (normal-form, payoff-maximization) game is a triple (N , (Si)i∈N , (ui)i∈N ).
Here, N is the set of players, |N | = n, often N = {1, . . . , n}. For each player i ∈ N , Si is the
set of (pure) strategies of player i. The set S =

∏
i∈N Si is called the set of states or strategy

profiles. For each i ∈ N , ui : S → R is the payoff function of player i. In state s ∈ S, player i
has a payoff of ui(s).

These two perspectives are entirely equivalent. We can derive a cost-minimization game by
setting ci(s) = −ui(s) and reuse the definitions. So, in particular, again mixed Nash equilibria
are defined by requiring each player to be playing a best response.

Recall this lemma from last lecture, it will be useful and important today.

Lemma 4.2. A mixed strategy σi is a best-response strategy against σ−i if and only if ui(σi, σ−i) ≥
ui(s′i, σ−i) for all pure strategies s′i ∈ Si.

1 Nash’s Theorem
We saw that in this more general class of games, pure Nash equilibria do not necessarily exist.
As we will prove today, mixed Nash equilibria always exist if the number of players and the
number of strategies is finite.

Theorem 4.3 (Nash’s Theorem). Every finite normal-form game has a mixed Nash equilibrium.

Nash’s theorem is usually proved via Brouwer’s fixed point theorem.

Theorem 4.4 (Brouwer’s Fixed Point Theorem). Every continuous function f : D → D mapping
a compact and convex nonempty subset D ⊆ Rm to itself has a fixed point x∗ ∈ D with f(x∗) = x∗.

As a reminder, these are the definitions of the terms used in Brouwer’s fixed point theorem.
Here, ‖ · ‖ denotes an arbitrary norm, for example, ‖x‖ = maxi|xi|.

• A set D ⊆ Rm is convex if for any x, y ∈ D and any λ ∈ [0, 1] we have λx+ (1− λ)y ∈ D.

x
y

convex

x y

not convex

• A set D ⊆ Rm is compact if and only if it is closed and bounded.

• A set D ⊆ Rm is bounded if and only if there is some bound r ≥ 0 such that ‖x‖ ≤ r for
all x ∈ D.
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• A set D ⊆ Rm is closed if it contains all its limit points. That is, consider any convergent
sequence (xn)n∈N within D, i.e., limn→∞ xn exists and xn ∈ D for all n ∈ N. Then
limn→∞ xn ∈ D.

[0, 1] is closed and bounded
(0, 1] is not closed but bounded

[0,∞) is closed and unbounded

• A function f : D → Rm is continuous at a point x ∈ D if for all ε > 0, there exists δ > 0,
such that for all y ∈ D: If ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε.
f is called continuous if it is continuous at every point x ∈ D.

There is an equivalent formulation of Brouwer’s fixed point theorem in one dimension:
For all a, b ∈ R, a < b, every continuous function f : [a, b]→ [a, b] has a fixed point.

b

b

a

a

Proof of Theorem 4.3. Consider a finite normal form game. Without loss of generality we assume
it to be a payoff-maximization game. Let N = {1, . . . , n}, Si = {1, . . . ,mi}. So the set of mixed
states X can be considered a subset of Rm with m =

∑n
i=1mi.

Exercise: Show that X is convex and compact.
We will define a function f : X → X that transforms a mixed strategy profile into another

mixed strategy profile. The fixed points of f are shown to be the mixed Nash equilibria of the
game.

For mixed state x and for i ∈ N and j ∈ Si, let

φi,j(x) = max{0, ui(j, x−i)− ui(x)} .

So, φi,j(x) is the amount by which player i’s payoff would increase when unilaterally moving
from x to j if this quantity is positive, otherwise it is 0. Observe that ui is a continuous function
as it is defined as ui(x) =

∑m1
s1=1 · · ·

∑mn
sn=1 x1,s1 . . . xn,snui(s). Therefore φi,j is also continuous.

Observe that by Lemma 4.2 a mixed state x is a Nash equilibrium if and only if φi,j(x) = 0
for all i = 1, . . . , n, j = 1, . . . ,mi.

Define f : X → X with f(x) = x′ = (x′1,1, ..., x
′
n,mn

) by

x′i,j = xi,j + φi,j(x)
1 +

∑mi
k=1 φi,k(x)

for all i = 1, . . . , n and j = 1, . . . ,mi.
Observe that x′ ∈ X. That means, f : X → X is well defined. Furthermore, f is continuous

because each φi,j is. Therefore, by Theorem 4.4, f has a fixed point, i.e., there is a point x∗ ∈ X
such that f(x∗) = x∗.
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We only need to show that every fixed point x∗ of f is a mixed Nash equilibrium. So, in
other words, we need to show that f(x∗) = x∗ implies that φi,j(x∗) = 0 for all i = 1, . . . , n,
j = 1, . . . ,mi.

Fix some i ∈ N . Once we have shown that φi,j(x∗) = 0 for j = 1, . . . ,mi, we are done.
Let j′ be chosen such that ui(j′, x∗−i) is minimized among the j′ such that x∗i,j′ > 0. As ui(x∗) is

defined to be
∑mi

j=1 x
∗
i,j ·ui(j, x∗−i), we have ui(x∗) =

∑mi
j=1 x

∗
i,j ·ui(j, x∗−i) ≥

∑mi
j=1 x

∗
i,j ·ui(j′, x∗−i) =

ui(j′, x∗−i). Therefore φi,j′(x∗) = max{0, ui(j′, x∗−i)− ui(x∗)} = 0.
We now use the fact that x∗ is a fixed point. Therefore, we have

x∗i,j′ =
x∗i,j′ + φi,j′(x∗)

1 +
∑mi

k=1 φi,k(x∗) =
x∗i,j′

1 +
∑mi

k=1 φi,k(x∗) .

As x∗i,j′ > 0, we also have

1 = 1
1 +

∑mi
k=1 φi,k(x∗) ,

and so
mi∑

k=1
φi,k(x∗) = 0 .

Since φi,k(x∗) ≥ 0 for all k, we have to have φi,k(x∗) = 0 for all k. This completes the proof.

2 Computing Nash Equilibria in Bimatrix Games
While we now know that mixed Nash equilibria always exist, we have no idea how to compute
them. There are infinitely many mixed strategies, so even exhaustive search is not an option.

In the remainder of today’s lecture, we will see how to reduce the search space to a finite
one and get an idea how a more sophisticated algorithm work. To this end, we will consider a
bimatrix utility-maximization game. Let A ∈ Rm1×m2 be the row player’s utility matrix, and
B ∈ Rm1×m2 be the column player’s utility matrix. Mixed strategies correspond to real-valued
vectors. We call x ∈ Rm1 the row player’s mixed strategy and y ∈ Rm2 the column player’s
mixed strategy. Note that by this notation, we can simply write the players’ utilities as matrix
products, namely urow(x, y) = xTAy, ucol(x, y) = xTBy.

Without loss of generality, we can assume that all entries in A and B are positive. This is
because adding some value c to all entries in A or B shifts all utilities the same way.

Furthermore, for a vector x let supp(x) denote the set of entries in which it is strictly positive
(support), i.e., supp(x) = {i | xi > 0}. Given this new notation, Lemma 4.2 can be re-written as
follows.

Lemma 4.5. x is best response to y if and only if for all i ∈ supp(x): (Ay)i = maxk(Ay)k

y is best response to x if and only if for all i ∈ supp(y): (xTB)i = maxk(xTB)k

Using this lemma, we can state: a pair of arbitrary real-valued vectors (x, y) ∈ Rm1 ×Rm2 is
a mixed Nash equilibrium if and only if there are numbers u, v > 0 such that∑

i

xi = 1 (Ay)i ≤ u for all i (Ay)i = u for all i ∈ supp(x)∑
i

yi = 1 (xTB)i ≤ v for all i (xTB)i = v for all i ∈ supp(y)

x, y ≥ 0
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We can substitute x̃ for x/v, ỹ for y/u. To find a mixed Nash equilibrium, it is sufficient to
find real vectors x̃, ỹ such that there are u, v > 0 for which∑

i

x̃i = 1/v (Aỹ)i ≤ 1 for all i (Aỹ)i = 1 for all i ∈ supp(x̃)∑
i

ỹi = 1/u (x̃TB)i ≤ 1 for all i (x̃TB)i = 1 for all i ∈ supp(ỹ)

x̃, ỹ ≥ 0

Note that u, v > 0 only appear in the conditions
∑

i x̃i = 1/v and
∑

i ỹi = 1/u. As vectors are
non-negative, they exist if and only if x̃ 6= 0 and ỹ 6= 0.

This, once again, simplifies our task: We have to find vectors x̃, ỹ 6= 0 for which

(Aỹ)i ≤ 1 for all i (Aỹ)i = 1 for all i ∈ supp(x̃)
(x̃TB)i ≤ 1 for all i (x̃TB)i = 1 for all i ∈ supp(ỹ)

x̃, ỹ ≥ 0

This already gives us a naive algorithm that runs in finite time: Try out any non-empty set
for supp(x̃) and supp(ỹ). Note that we now have |supp(x̃)|+ |supp(ỹ)| variables to set and the
same number of linear equations. So, usually, there will a unique solution. Find this solution
and check whether it also fulfills the inequalities. We already followed this approach last time
when we computed the mixed Nash equilibria of the 2× 2 Inspection Game. We guessed that
both supports comprise both strategies and solved the resulting equalities.

3 Bonus: Lemke–Howson Algorithm
The following section was not covered in class and is not relevant for the exams.

A smarter algorithm is the Lemke–Howson algorithm. It is a lot like the simplex algorithm
for linear programming. The idea is to simplify notation by combining the two matrices A and
B into one matrix C by setting

C =
(

0 BT

A 0

)
Then, the problem becomes to find z̃ 6= 0 such that

(Cz̃)i ≤ 1 and z̃i ≥ 0 and (z̃i = 0 or (Cz̃)i = 1) for all i

The conditions (Cz̃)i ≤ 1 and z̃i ≥ 0 define a polytope in Rm1+m2 . Each condition (Cz̃)i = 1
and z̃i = 0 corresponds to a hyperplane in this space. The hyperplanes are the boundaries of the
polytope. Overall, we have 2(m1 +m2) such hyperplanes. In each vertex of the polytope (in the
non-degenerate case), m1 +m2 hyperplanes intersect because this is the dimension of the space.
We have to find the point at which the right hyperplanes intersect, namely for each i we either
want z̃i = 0 or Cz̃)i = 1.

It is easy to find a vertex fulfilling this condition for all but one i. The Lemke–Howson
algorithm starts at such a vertex and moves to one for which again all or all but one of the
conditions are fulfilled. If one does things the right way, no cycles can occur and therefore
eventually one has to reach a vertex at which all conditions are fulfilled.

Example 4.6. Although matrices C derived from bimatrix games have the off-diagonal block
structure, it is instructive to consider the following 2× 2 matrix

C =
(

1 2
2 1

)
.
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In this example, the polygon looks as follows.

(1
2 , 0)

(0, 1
2)

(0, 0)

(1
3 ,

1
3)

There are three vertices, (0, 0) and (1
3 ,

1
3) have the property that for each i we have z̃i = 0 or

(Cz̃)i = 1. For the other two either z̃1 = 0 and (Cz̃)1 = 1, or z̃2 = 0 and (Cz̃)2 = 1.
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