

Complexity of Boolean functions

SS 2019 Homework 7

05.06.2019

Exercise 1:

Develop an algorithm which computes for each node g of a given monotone network β the formulas $\text{DNF}_\beta(g)$ and $\text{CNF}_\beta(g)$.

Exercise 2:

- a) Describe a CNF/DNF-switch.
- b) Let α be a DNF-formula (CNF-formula). Prove that the formula γ obtained by a DNF/CNF-switch (CNF/DNF-switch) computes the same function as α .

Exercise 3:

Consider the lower bound proof for the clique function of the lecture.

- a) Show that the number of inputs in T_1 for which $\text{DNF}'_\beta(g_i)$ could introduce an error is bounded by $\binom{m-r}{s-r} \left(\frac{m}{4s}\right)^r$.
- b) Show that the number of inputs in T_0 for which $\text{CNF}'_\beta(g_i)$ could introduce an error is bounded by $\left(\frac{s}{2}\right)^k (s-1)^{m-k}$.
- c) Show that either $\text{CNF}'_\beta(g_t)$ computes the constant function one or $\text{CNF}'_\beta(g_t)$ computes the value of at least half of the inputs in T_1 incorrectly.

Exercise 4:

Prove Theorem 5.1 of the lecture.